首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122463篇
  免费   14565篇
  国内免费   419篇
  2021年   912篇
  2018年   1144篇
  2017年   1122篇
  2016年   1505篇
  2015年   1945篇
  2014年   2393篇
  2013年   3022篇
  2012年   3514篇
  2011年   3469篇
  2010年   2334篇
  2009年   2258篇
  2008年   2983篇
  2007年   2887篇
  2006年   2912篇
  2005年   2627篇
  2004年   2609篇
  2003年   2612篇
  2002年   2530篇
  2001年   9896篇
  2000年   9746篇
  1999年   7413篇
  1998年   1775篇
  1997年   1919篇
  1996年   1705篇
  1995年   1532篇
  1994年   1433篇
  1993年   1367篇
  1992年   4964篇
  1991年   4723篇
  1990年   4198篇
  1989年   4163篇
  1988年   3759篇
  1987年   3241篇
  1986年   2934篇
  1985年   2824篇
  1984年   2107篇
  1983年   1845篇
  1982年   1338篇
  1981年   1096篇
  1980年   1025篇
  1979年   1883篇
  1978年   1471篇
  1977年   1295篇
  1976年   1109篇
  1975年   1225篇
  1974年   1266篇
  1973年   1260篇
  1972年   1121篇
  1971年   1036篇
  1970年   865篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
131.
132.
Endogenous inhibitors for calcium-activated neutral protease (CANP) were purified from rabbit erythrocytes and liver. The purified inhibitors showed single bands but with significantly different mobilities on sodium dodecylsulfate-polyacrylamide gel electrophoresis. Peptide mapping and sequencing analyses have revealed that the erythrocyte inhibitor (429 residues) retains the C-terminal three repetitive units of the liver inhibitor (639 residues), which contains four potential repetitive units for inhibition of CANP. The erythrocyte and liver inhibitors inhibited 3 and 4 moles of CANP on the basis of the molecular weights of 46,000 and 68,000, respectively.  相似文献   
133.
Type III glycogen storage disease is caused by a deficiency of glycogen debranching-enzyme activity. Many patients with this disease have both liver and muscle involvement, whereas others have only liver involvement without clinical or laboratory evidence of myopathy. To improve our understanding of the molecular basis of the disease, debranching enzyme was purified 238-fold from porcine skeletal muscle. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified enzyme gave a single band with a relative molecular weight of 160,000 that migrated to the same position as purified rabbit-muscle debranching enzyme. Antiserum against porcine debranching enzyme was prepared in rabbit. The antiserum reacted against porcine debranching enzyme with a single precipitin line and demonstrated a reaction having complete identity to those of both the enzyme present in crude muscle and the enzyme present in liver extracts. Incubation of antiserum with purified porcine debranching enzyme inhibited almost all enzyme activity, whereas such treatment with preimmune serum had little effect. The antiserum also inhibited debranching-enzyme activity in crude liver extracts from both pigs and humans to the same extent as was observed in muscle. Immunoblot analysis probed with anti-porcine-muscle debranching-enzyme antiserum showed that the antiserum can detect debranching enzyme in both human muscle and human liver. The bands detected in human samples by the antiserum were the same size as the one detected in porcine muscle. Five patients with Type III and six patients with other types of glycogen storage disease were subjected to immunoblot analysis. Although anti-porcine antiserum detected specific bands in all liver and muscle samples from patients with other types of glycogen storage disease (Types I, II, and IX), the antiserum detected no cross-reactive material in any of the liver or muscle samples from patients with Type III glycogen storage disease. These data indicate (1) immunochemical similarity of debranching enzyme in liver and muscle and (2) that deficiency of debranching-enzyme activity in Type III glycogen storage disease is due to absence of debrancher protein in the patients that we studied.  相似文献   
134.
In Exp. 1, PMSG was injected to 26-day-old prepubertal rats to induce ovulations. On Day 2 (2 days later, the equivalent of the day of pro-oestrus) they received at 08:00 h 5 mg hydroxyflutamide or vehicle and at 12:00 h 2 mg progesterone or testosterone or vehicle. Animals were killed at 18:00 h on Day 2 or at 09:00 h on Day 3. Progesterone but not testosterone restored the preovulatory LH surge and ovulation in hydroxyflutamide-treated rats. In Exp. 2, 2 mg progesterone or testosterone were injected between 10:30 and 11:00 h on Day 2, to advance the pro-oestrous LH surge and ovulation in PMSG-primed prepubertal rats. Injection of hydroxyflutamide abolished the ability of progesterone to advance the LH surge or ovulation. Testosterone did not induce the advancement of LH surge or ovulation. In Exp. 3, ovariectomized prepubertal rats implanted with oestradiol-17 beta showed significantly (P less than 0.01) elevated serum LH concentrations at 18:00 h over those observed at 10:00 h. Progesterone injection to these animals further elevated the serum LH concentrations at 18:00 h, in a dose-dependent manner, with maximal values resulting from 1 mg progesterone. Hydroxyflutamide treatment significantly (P less than 0.003) reduced the serum LH values in rats receiving 0-1 mg progesterone but 2 mg progesterone were able to overcome this inhibition. It is concluded that progesterone but not testosterone can reverse the effects of hydroxyflutamide on the preovulatory LH surge and ovulation. It appears that hydroxyflutamide may interfere with progesterone action in induction of the LH surge, suggesting a hitherto undescribed anti-progestagenic action of hydroxyflutamide.  相似文献   
135.
136.
137.
138.
Conclusion Since the EPG method is increasingly utilized in the investigation of plant-Homoptera interactions, this software has been developed to enable fast processing of abundant data. The objective seems to have been achieved and, with a little practice, a 2-hour experiment may be analysed in about 10–15 minutes. Mac-Stylet is stand-alone shareware, freely distributed to all persons interested (request to G. Febvay, email: febvay@jouy.inra.fr).  相似文献   
139.
Alzheimer’s disease (AD) is a devastating neurodegenerative condition with no known cure. While current therapies target late-stage amyloid formation and cholinergic tone, to date, these strategies have proven ineffective at preventing disease progression. The reasons for this may be varied, and could reflect late intervention, or, that earlier pathogenic mechanisms have been overlooked and permitted to accelerate the disease process. One such example would include synaptic pathology, the disease component strongly associated with cognitive impairment. Dysregulated Ca2+ homeostasis may be one of the critical factors driving synaptic dysfunction. One of the earliest pathophysiological indicators in mutant presenilin (PS) AD mice is increased intracellular Ca2+ signaling, predominantly through the ER-localized inositol triphosphate (IP3) and ryanodine receptors (RyR). In particular, the RyR-mediated Ca2+ upregulation within synaptic compartments is associated with altered synaptic homeostasis and network depression at early (presymptomatic) AD stages. Here, we offer an alternative approach to AD therapeutics by stabilizing early pathogenic mechanisms associated with synaptic abnormalities. We targeted the RyR as a means to prevent disease progression, and sub-chronically treated AD mouse models (4-weeks) with a novel formulation of the RyR inhibitor, dantrolene. Using 2-photon Ca2+ imaging and patch clamp recordings, we demonstrate that dantrolene treatment fully normalizes ER Ca2+ signaling within somatic and dendritic compartments in early and later-stage AD mice in hippocampal slices. Additionally, the elevated RyR2 levels in AD mice are restored to control levels with dantrolene treatment, as are synaptic transmission and synaptic plasticity. Aβ deposition within the cortex and hippocampus is also reduced in dantrolene-treated AD mice. In this study, we highlight the pivotal role of Ca2+ aberrations in AD, and propose a novel strategy to preserve synaptic function, and thereby cognitive function, in early AD patients.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号