首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   915篇
  免费   123篇
  1038篇
  2021年   9篇
  2020年   9篇
  2018年   14篇
  2017年   9篇
  2016年   12篇
  2015年   22篇
  2014年   29篇
  2013年   40篇
  2012年   33篇
  2011年   36篇
  2010年   22篇
  2009年   20篇
  2008年   31篇
  2007年   31篇
  2006年   44篇
  2005年   32篇
  2004年   28篇
  2003年   28篇
  2002年   30篇
  2001年   21篇
  2000年   23篇
  1999年   18篇
  1998年   21篇
  1997年   11篇
  1996年   14篇
  1994年   17篇
  1993年   13篇
  1992年   24篇
  1991年   15篇
  1990年   17篇
  1989年   20篇
  1988年   16篇
  1987年   12篇
  1985年   10篇
  1983年   12篇
  1982年   8篇
  1981年   15篇
  1980年   8篇
  1979年   12篇
  1978年   11篇
  1977年   8篇
  1976年   11篇
  1974年   11篇
  1973年   8篇
  1971年   8篇
  1970年   10篇
  1969年   12篇
  1968年   10篇
  1965年   8篇
  1964年   8篇
排序方式: 共有1038条查询结果,搜索用时 15 毫秒
31.
Abstract The Eastern Snake River Plain aquifer has hydrologically distinct zones in basalt flow units and interbedded sediments. The zones that differ markedly in physical features (e.g., porosity and permeability) have similar groundwater chemistries. The primary objective of this study was to determine whether intervals within the aquifer that contrast on the basis of permeability have distinct communities of unattached microorganisms based on functional attributes. Aquifer sampling was conducted using a submersible pump to obtain whole-well (w) samples, and a straddle-packer pump (SPP) to obtain samples from specific aquifer intervals that were vertically distributed in the open borehole. The SPP intervals ranged from 4.6 to 6.1 m in length and were located from 142 to 198 m below land surface. A community-level physiological profile (CLPP) was used to determine functional characteristics of the microbial community in the groundwater samples based on the community response to 95 sole organic carbon sources. Surface soil samples at the site were analyzed in a similar manner for comparison. The total bacterial population in the groundwater samples was determined using acridine orange direct counts. Principal components analysis (PCA) of the CLPP dataset distinguished between surface soil and aquifer microbial communities. Soils scored low in the respiration of polymers, esters, and amines and high in bromosuccinate, when compared to aquifer samples. The W samples were distinct from SPP samples. The 180- to 198-m interval, with the lowest hydraulic conductivity of all intervals, yielded samples that grouped together by PCA and cluster analysis. Direct counts varied between 104 and 105 cells ml−1, and showed no relationship to the depth of the sample or to the hydraulic conductivity of the sample interval. Differences between microbial communities based on respired carbon compounds were discerned in separate, hydrologically distinct intervals within the borehole, although these differences were slight. Differences among aquifer intervals were less apparent than differences between surface soils and groundwater, and may be related to variations in hydrologic properties over the intervals sampled. The results suggest that free-living microbial communities in basalt aquifers, as characterized by CLPP are relatively unaffected by wide ranges in hydraulic conductivity when other abiotic factors are essentially equal. Received: 14 December 1995; Revised: 12 April 1996  相似文献   
32.
The object of this study was to test whether posaconazole, a broad-spectrum antifungal agent inhibiting ergosterol biosynthesis, exhibits synergy with the β-1,3 glucan synthase inhibitor caspofungin or the calcineurin inhibitor FK506 against the human fungal pathogen Candida albicans. Although current drug treatments for Candida infection are often efficacious, the available antifungal armamentarium may not be keeping pace with the increasing incidence of drug resistant strains. The development of drug combinations or novel antifungal drugs to address emerging drug resistance is therefore of general importance. Combination drug therapies are employed to treat patients with HIV, cancer, or tuberculosis, and has considerable promise in the treatment of fungal infections like cryptococcal meningitis and C. albicans infections. Our studies reported here demonstrate that posaconazole exhibits in vitro synergy with caspofungin or FK506 against drug susceptible or resistant C. albicans strains. Furthermore, these combinations also show in vivo synergy against C. albicans strain SC5314 and its derived echinocandin-resistant mutants, which harbor an S645Y mutation in the CaFks1 β-1,3 glucan synthase drug target, suggesting potential therapeutic applicability for these combinations in the future.  相似文献   
33.
A wound-inducible proteinase Inhibitor I gene from tomato containing 725 bp of the 5 region and 2.5 kbp of the 3 region was stably incorporated into the genome of black nightshade plants (Solanum nigrum) using an Agrobacterium Ti plasmid-derived vector. Transgenic nightshade plants were selected that expressed the tomato Inhibitor I protein in leaf tissue. The leaves of the plants contained constitutive levels of the inhibitor protein of up to 60 g/g tissue. These levels increased by a factor of about two in response to severe wounding. Only leaves and petioles exhibited the presence of the inhibitor, indicating that the gene exhibited the same tissue specificity of expression found in situ in wounded tomato leaves. Inhibitor I was extracted from leaves of wounded transformed nightshade plants and was partially purified by affinity chromatography on a chymotrypsin-Sepharose column. The affinity-purified protein was identical to the native tomato Inhibitor I in its immunological reactivity and in its inhibitory activity against chymotrypsin. The protein exhibited the same M r of 8 kDa as the native tomato Inhibitor I and its N-terminal amino acid sequence was identical to that of the native tomato inhibitor I, indicating that the protein was properly processed in nightshade plants. These expriments are the first report of the expression of a member of the wound-inducible tomato Inhibitor I gene family in transgenic plants. The results demonstrate that the gene contains elements that can be regulated in a wound-inducible, tissuespecific manner in nightshade plants.  相似文献   
34.
Dilated cardiomyopathy (DCM) is associated with mutations in cardiomyocyte sarcomeric proteins, including α-tropomyosin. In conjunction with troponin, tropomyosin shifts to regulate actomyosin interactions. Tropomyosin molecules overlap via tropomyosin–tropomyosin head-to-tail associations, forming a continuous strand along the thin filament. These associations are critical for propagation of tropomyosin''s reconfiguration along the thin filament and key for the cooperative switching between heart muscle contraction and relaxation. Here, we tested perturbations in tropomyosin structure, biochemistry, and function caused by the DCM-linked mutation, M8R, which is located at the overlap junction. Localized and nonlocalized structural effects of the mutation were found in tropomyosin that ultimately perturb its thin filament regulatory function. Comparison of mutant and WT α-tropomyosin was carried out using in vitro motility assays, CD, actin co-sedimentation, and molecular dynamics simulations. Regulated thin filament velocity measurements showed that the presence of M8R tropomyosin decreased calcium sensitivity and thin filament cooperativity. The co-sedimentation of actin and tropomyosin showed weakening of actin-mutant tropomyosin binding. The binding of troponin T''s N terminus to the actin-mutant tropomyosin complex was also weakened. CD and molecular dynamics indicate that the M8R mutation disrupts the four-helix bundle at the head-to-tail junction, leading to weaker tropomyosin–tropomyosin binding and weaker tropomyosin–actin binding. Molecular dynamics revealed that altered end-to-end bond formation has effects extending toward the central region of the tropomyosin molecule, which alter the azimuthal position of tropomyosin, likely disrupting the mutant thin filament response to calcium. These results demonstrate that mutation-induced alterations in tropomyosin–thin filament interactions underlie the altered regulatory phenotype and ultimately the pathogenesis of DCM.  相似文献   
35.

Objectives

To estimate the annual cost to patients, the health service and society of infectious intestinal disease (IID) from Campylobacter, norovirus and rotavirus.

Design

Secondary data analysis.

Setting

The United Kingdom population, 2008–9.

Main outcome measures

Cases and frequency of health services usage due to these three pathogens; associated healthcare costs; direct, out-of-pocket expenses; indirect costs to patients and caregivers.

Results

The median estimated costs to patients and the health service at 2008–9 prices were: Campylobacter £50 million (95% CI: £33m–£75m), norovirus £81 million (95% CI: £63m–£106m), rotavirus £25m (95% CI: £18m–£35m). The costs per case were approximately £30 for norovirus and rotavirus, and £85 for Campylobacter. This was mostly borne by patients and caregivers through lost income or out-of-pocket expenditure. The cost of Campylobacter-related Guillain-Barré syndrome hospitalisation was £1.26 million (95% CI: £0.4m–£4.2m).

Conclusions

Norovirus causes greater economic burden than Campylobacter and rotavirus combined. Efforts to control IID must prioritise norovirus. For Campylobacter, estimated costs should be considered in the context of expenditure to control this pathogen in agriculture, food production and retail. Our estimates, prior to routine rotavirus immunisation in the UK, provide a baseline vaccine cost-effectiveness analyses.  相似文献   
36.
This paper shows that high-molecular-weight tropomyosins (TMs), as well as shorter isoforms of this protein, are present in significant amounts in lamellipodia and filopodia of spreading normal and transformed cells. The presence of TM in these locales was ascertained by staining of cells with antibodies reacting with endogenous TMs and through the expression of hemaglutinin- and green fluorescent protein-tagged TM isoforms. The observations are contrary to recent reports suggesting the absence of TMs in regions,where polymerization of actin takes place, and indicate that the view of the role of TM in the formation of actin filaments needs to be significantly revised.  相似文献   
37.
RNA-directed recombination can be used to catalyze a disproportionation reaction among small RNA substrates to create new combinations of sequences. But the accommodation of secondary and tertiary structural constraints in the substrates by recombinase ribozymes has not been explored. Here, we show that the Azoarcus group I intron can recombine oligoribonucleotides to construct class I ligase ribozymes, which are catalytically active upon synthesis. The substrate oligonucleotides, ranging in size from 58 to 104 nucleotides (nt), along with the 152-nt ligase ribozymes they reconstitute, can contain significant amounts of secondary structure. However, substrate recognition by the Azoarcus ribozyme depends on the existence of a single accessible CAU triplet for effective recombination. A biphasic temperature reaction profile was designed such that the sequential recombination/ligation events could take place in a thermocycler without human intervention. A temperature-dependent pH shift of the reaction buffer contributes to the success of the net reaction. When the substrate for the ligase ribozyme is introduced into the reaction mixture, as much as 11% can be observed being converted to product by the recombined ligase in the same reaction vessel. Recombination followed by ligation can also occur under isothermal conditions at 37 degrees C. Tertiary structure formation of the ligase upon construction can provide some protection from cleavage by the Azoarcus ribozyme when compared to the constituent substrates. These data suggest that RNA-directed recombination can, in fact, articulate complex ribozymes, and that there are logical rules that can guide the optimal placement of the CAU recognition sequence.  相似文献   
38.
The pore-forming gap junctional protein connexin 43 (Cx43) has a short (1-3 h) half-life in cells in tissue culture and in whole tissues. Although critical for cellular function in all tissues, the process of gap junction turnover is not well understood because treatment of cells with a proteasomal inhibitor results in larger gap junctions but little change in total Cx43 protein whereas lysosomal inhibitors increase total, mostly nonjunctional Cx43. To better understand turnover and identify potential sites of Cx43 ubiquitination, we prepared constructs of Cx43 with different lysines converted to arginines. However, when transfected into cells, a mutant version of Cx43 with all lysines converted to arginines behaved similarly to wild type in the presence of proteasomal and lysosomal inhibitors, indicating that ubiquitination of Cx43 did not appear to be playing a role in gap junction stability. Through the use of inhibitors and dominant negative constructs, we found that Akt (protein kinase B) activity controlled gap junction stability and was necessary to form larger stable gap junctions. Akt activation was increased upon proteasomal inhibition and resulted in phosphorylation of Cx43 at Akt phosphorylation consensus sites. Thus, we conclude that Cx43 ubiquitination is not necessary for the regulation of Cx43 turnover; rather, Akt activity, probably through direct phosphorylation of Cx43, controls gap junction stability. This linkage of a kinase involved in controlling cell survival and growth to gap junction stability may mechanistically explain how gap junctions and Akt play similar regulatory roles.  相似文献   
39.
The yeast 2 micron plasmid achieves high fidelity segregation by coupling its partitioning pathway to that of the chromosomes. Mutations affecting distinct steps of chromosome segregation cause the plasmid to missegregate in tandem with the chromosomes. In the absence of the plasmid stability system, consisting of the Rep1 and Rep2 proteins and the STB DNA, plasmid and chromosome segregations are uncoupled. The Rep proteins, acting in concert, recruit the yeast cohesin complex to the STB locus. The periodicity of cohesin association and dissociation is nearly identical for the plasmid and the chromosomes. The timely disassembly of cohesin is a prerequisite for plasmid segregation. Cohesin-mediated pairing and unpairing likely provides a counting mechanism for evenly partitioning plasmids either in association with or independently of the chromosomes.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号