首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2068篇
  免费   178篇
  国内免费   1篇
  2023年   9篇
  2022年   21篇
  2021年   43篇
  2020年   27篇
  2019年   31篇
  2018年   30篇
  2017年   23篇
  2016年   64篇
  2015年   103篇
  2014年   92篇
  2013年   139篇
  2012年   149篇
  2011年   166篇
  2010年   84篇
  2009年   75篇
  2008年   124篇
  2007年   122篇
  2006年   134篇
  2005年   92篇
  2004年   95篇
  2003年   119篇
  2002年   89篇
  2001年   23篇
  2000年   10篇
  1999年   24篇
  1998年   21篇
  1997年   14篇
  1996年   23篇
  1995年   15篇
  1994年   14篇
  1993年   20篇
  1992年   15篇
  1991年   20篇
  1990年   16篇
  1989年   18篇
  1988年   26篇
  1987年   8篇
  1986年   8篇
  1985年   9篇
  1984年   14篇
  1983年   8篇
  1982年   6篇
  1981年   11篇
  1980年   5篇
  1979年   4篇
  1978年   6篇
  1976年   4篇
  1973年   7篇
  1971年   5篇
  1966年   4篇
排序方式: 共有2247条查询结果,搜索用时 43 毫秒
151.
152.
Molecular tools are increasingly being used to address questions about parasite epidemiology. Parasites represent a diverse group and they might not fit traditional population genetic models. Testing hypotheses depends equally on correct sampling, appropriate tool and/or marker choice, appropriate analysis and careful interpretation. All methods of analysis make assumptions which, if violated, make the results invalid. Some guidelines to avoid common pitfalls are offered here.  相似文献   
153.
154.
Regulated switching of the mutually exclusive exons 2 and 3 of alpha-tropomyosin (TM) involves repression of exon 3 in smooth muscle cells. Polypyrimidine tract-binding protein (PTB) is necessary but not sufficient for regulation of TM splicing. Raver1 was identified in two-hybrid screens by its interactions with the cytoskeletal proteins actinin and vinculin, and was also found to interact with PTB. Consistent with these interactions raver1 can be localized in either the nucleus or cytoplasm. Here we show that raver1 is able to promote the smooth muscle-specific alternative splicing of TM by enhancing PTB-mediated repression of exon 3. This activity of raver1 is dependent upon characterized PTB-binding regulatory elements and upon a region of raver1 necessary for interaction with PTB. Heterologous recruitment of raver1, or just its C-terminus, induced very high levels of exon 3 skipping, bypassing the usual need for PTB binding sites downstream of exon 3. This suggests a novel mechanism for PTB-mediated splicing repression involving recruitment of raver1 as a potent splicing co-repressor.  相似文献   
155.
Polymerization of members of the serpin superfamily underlies diseases as diverse as cirrhosis, angioedema, thrombosis and dementia. The Drosophila serpin Necrotic controls the innate immune response and is homologous to human alpha(1)-antitrypsin. We show that necrotic mutations that are identical to the Z-deficiency variant of alpha(1)-antitrypsin form urea-stable polymers in vivo. These necrotic mutations are temperature sensitive, which is in keeping with the temperature-dependent polymerization of serpins in vitro and the role of childhood fevers in exacerbating liver disease in Z alpha-antitrypsin deficiency. In addition, we identify two nec mutations homologous to an antithrombin point mutation that is responsible for neonatal thrombosis. Transgenic flies carrying an S>F amino-acid substitution equivalent to that found in Siiyama-variant antitrypsin (nec(S>F.UAS)) fail to complement nec-null mutations and demonstrate a dominant temperature-dependent inactivation of the wild-type nec allele. Taken together, these data establish Drosophila as a powerful system to study serpin polymerization in vivo.  相似文献   
156.
157.
Establishment of the Rhizobium-legume symbiosis depends on a molecular dialogue, in which rhizobial nodulation (Nod) factors act as symbiotic signals, playing a key role in the control of specificity of infection and nodule formation. Using nodulation-defective (Nod-) mutants of Medicago truncatula to study the mechanisms controlling Nod factor perception and signalling, we have previously identified five genes that control components of a Nod factor-activated signal transduction pathway. Characterisation of a new M. truncatula Nod- mutant led to the identification of the Nod Factor Perception (NFP) locus. The nfp mutant has a novel phenotype among Nod- mutants of M. truncatula, as it does not respond to Nod factors by any of the responses tested. The nfp mutant thus shows no rapid calcium flux, the earliest detectable Nod factor response of wild-type plants, and no root hair deformation. The nfp mutant is also deficient in Nod factor-induced calcium spiking and early nodulin gene expression. While certain genes controlling Nod factor signal transduction also control the establishment of an arbuscular mycorrhizal symbiosis, the nfp mutant shows a wild-type mycorrhizal phenotype. These data indicate that the NFP locus controls an early step of Nod factor signal transduction, upstream of previously identified genes and specific to nodulation.  相似文献   
158.
Two series of derivatives have been prepared and assayed as inhibitors of two physiologically relevant serine proteases, human thrombin and human trypsin. The first series includes alkyl-/ aralkyl-/aryl- and hetarylsulfonyl-aminoguanidines. It was thus observed that sulfanilyl-aminoguanidine possesses moderate but intrinsically selective thrombin inhibitory properties, with KI values around 90 and 1400 nM against thrombin and trypsin respectively. Further elaboration of this molecule afforded compounds that inhibited thrombin with KI values in the range 10-50 nM, whereas affinity for trypsin remained relatively low. Such compounds were obtained either by attaching benzyloxycarbonyl- or 4-toluenesulfonylureido-protected amino acids (such as D-Phe, L-Pro) or dipeptides (such as Phe-Pro, Gly His, beta-Ala-His or Pro-Gly) to the N-4 atom of the lead molecule, sulfanilyl-aminoguanidine, or by attaching substituted-pyridinium propylcarboxamido moieties to this lead. Thus, this study brings novel insights regarding a novel non-basic S1 anchoring moiety (i.e., SO2NHNHC(=NH)NH2), and new types of peptidomimetic scaffolds obtained by incorporating tosylureido-amino acids/pyridinium-substituted-GABA moieties in the hydrophobic binding site(s). Structure-activity correlations of the new serine protease inhibitors are also discussed based on a QSAR model described previously for a large series of structurally-related derivatives (Supuran et al. (1999) J. Med. Chem., in press).  相似文献   
159.
Previous investigations have shown that insect juvenile hormone (JH) and its analogues induce precocious metamorphosis of barnacle cypris larvae. In the present study, methyl farnesoate (MF; structurally identical to JH III, except for the absence of an epoxide group) has been shown to have a concentration-dependent effect on the development of cyprids of the barnacle Balanus amphitrite. Analysis of cypris extracts by gas chromatography-mass spectrometry with selected ion monitoring (GC-MS-SIM) confirmed the presence of endogenous MF. These data provide evidence that MF functions as a juvenilizing hormone in barnacle cyprids, an effect that hitherto has not been noted.  相似文献   
160.
Cystic fibrosis is a common human genetic disease caused by mutations in CFTR, a gene that codes for a chloride channel that is regulated by phosphorylation and cytosolic nucleotides. As part of a program to discover natural animal models for human genetic diseases, we have determined the genomic sequence of CFTR in the Rhesus monkey, Macaca mulatta. The coding region of rhesus CFTR is 98.3% identical to human CFTR at the nucleotide level and 98.2% identical and 99.7% similar at the amino acid level. Partial sequences of flanking introns (5582 base pair positions analyzed) revealed 91.1% identity with human introns. Relative to rhesus intronic sequence, the human sequences had 27 insertions and 22 deletions. Primer sequences for amplification of rhesus genomic CFTR sequences are provided. The accession number is AF013753 (all 27 exons and some flanking intronic sequence). Received: 27 August 1992 / Accepted: 5 December 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号