首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2064篇
  免费   189篇
  国内免费   1篇
  2023年   10篇
  2022年   22篇
  2021年   46篇
  2020年   30篇
  2019年   33篇
  2018年   31篇
  2017年   25篇
  2016年   65篇
  2015年   106篇
  2014年   92篇
  2013年   141篇
  2012年   151篇
  2011年   168篇
  2010年   85篇
  2009年   76篇
  2008年   125篇
  2007年   122篇
  2006年   134篇
  2005年   94篇
  2004年   95篇
  2003年   119篇
  2002年   91篇
  2001年   22篇
  2000年   11篇
  1999年   25篇
  1998年   21篇
  1997年   16篇
  1996年   20篇
  1995年   15篇
  1994年   14篇
  1993年   21篇
  1992年   12篇
  1991年   18篇
  1990年   16篇
  1989年   16篇
  1988年   24篇
  1987年   9篇
  1986年   11篇
  1985年   9篇
  1984年   18篇
  1983年   9篇
  1982年   6篇
  1981年   12篇
  1980年   6篇
  1979年   6篇
  1978年   5篇
  1976年   4篇
  1973年   5篇
  1971年   4篇
  1931年   3篇
排序方式: 共有2254条查询结果,搜索用时 15 毫秒
131.
The thermal denaturation behaviour of glycinin solutions has been studied in situ as a function of ionic strength using various spectroscopic methods. Changes in secondary structure occurred at temperatures above 60 degrees C, well before the onset of gelation. Even after heating to 95 degrees C, much of the native beta-sheet structure of glycinin was retained, as indicated by the amide I peak maximum at 1635 cm(-1) in the Fourier transformed infrared (FT-IR) spectrum. This was accompanied by an increase in the 1625 cm(-1) band, indicative of the formation of intermolecular beta-sheet associated with protein aggregation. Nuclear magnetic resonance (NMR) spectroscopy confirmed the presence of highly mobile regions in glycinin comprising predominantly of Gln and Glu residues, corresponding to mobile regions previously identified by crystallographic studies. There was also evidence of a hydrogen-bonded structure within this mobile region, which may correspond to an alpha-helical region from Pro(256) to (or just before) Pro(269) in proglycinin. This structure disappeared at 95 degrees C, when heat-set gel formation occurred, as indicated by a sudden broadening and weakening of the NMR signal. Otherwise the NMR spectrum changed little during heating, emphasising the remarkable thermal stability of glycinin. It is proposed that during heating the core beta-barrel structure remains intact, but that the interface between the beta-domains melts, revealing hydrophobic faces which may then form new structures in a gel-network. As Cys(45), which forms the disulfide with Cys(12) linking the acidic and basic polypeptides, is found in this interface, such a rearrangement of the individual beta-domains could be accompanied by cleavage of this disulfide bond, as is observed experimentally. Such information contributes to our understanding the aggregative behaviour of proteins, and hence develops knowledge-based strategies for controlling and manipulating it.  相似文献   
132.
It has been hypothesized that bone cells have a hyaluronic acid (HA) rich glycocalyx (cell coat or pericellular matrix) and that this contributes to bone cell mechanotransduction via fluid flow. The glycocalyx of bone cells of the MC3T3-E1 osteoblastic cell line and the MLO-Y4 osteocytic cell line were characterized. Alcian blue staining and lectin binding experiments suggested that these cells have a glycocalyx rich in HA. Sulphated proteoglycans were not detected. Staining with hyaluronic acid binding protein and degradation by hyaluronidase confirmed that HA was a major component of the glycocalyx. We subjected cells, with and without hyaluronidase treatment, to oscillating fluid flow under standardized in vitro conditions. There was no effect of glycocalyx degradation on the intracellular calcium signal, in either cell type, in terms of the percentage of cells responding (40-80%) or the magnitude of the response (2-5 times baseline). However, a 4-fold fluid flow induced increase in PGE2 was eliminated by hyaluronidase pre-treatment in MLO-Y4 cells. We conclude that under these conditions the calcium and PGE2 responses occur via different pathways. An intact glycocalyx is not necessary in order to initiate a calcium signal in response to oscillating fluid flow. However, in osteocyte-like cells the PGE2 pathway is more dependent on mechanical signals transmitted through the glycocalyx.  相似文献   
133.
Cellular proliferation is controlled by the integration and coordination of extracellular signals. This study explores the role of the protein annexin 1 (ANXA1) in the regulation of such events. We show that ANXA1 has a cell-type independent, anti-proliferative function through sustained activation of the ERK signaling cascade. Moreover, ANXA1 reduces proliferation by ERK-mediated disruption of the actin cytoskeleton and ablation of cyclin D1 protein expression and not by ERK-mediated induction of the cyclin-dependent kinase, CDK2, inhibitor p21(cip/waf). Finally, ANXA1 regulates the ERK pathway at a proximal location, by SH2 domain-independent association with the adapter protein Grb-2. In summary, overexpression of ANXA1 mediates the disruption of normal cell morphology and inhibits cyclin D1 expression, therefore reducing cell proliferation through proximal modulation of the ERK signal transduction pathway.  相似文献   
134.
Polypyrimidine tract-binding protein (PTB) is an abundant widespread RNA-binding protein with roles in regulation of pre-mRNA alternative splicing and 3'-end processing, internal ribosomal entry site-driven translation, and mRNA localization. Tissue-restricted paralogs of PTB have previously been reported in neuronal and hematopoietic cells. These proteins are thought to replace many general functions of PTB, but to have some distinct activities, e.g. in the tissue-specific regulation of some alternative splicing events. We report the identification and characterization of a fourth rodent PTB paralog (smPTB) that is expressed at high levels in a number of smooth muscle tissues. Recombinant smPTB localized to the nucleus, bound to RNA, and was able to regulate alternative splicing. We suggest that replacement of PTB by smPTB might be important in controlling some pre-mRNA alternative splicing events.  相似文献   
135.
136.
A series of compounds has been prepared by reaction of dicyandiamide with alkyl/arylsulfonyl halides as well as arylsulfonylisocyanates to locate a lead for obtaining weakly basic thrombin inhibitors with sulfonyldicyandiamide moieties as the S1 anchoring group. The detected lead was sulfanilyl-dicyandiamide (K1 of 3 microM against thrombin, and 15 microM against trypsin), which has been further derivatized at the 4-amino group by incorporating arylsulfonylureido as well as amino acyl/dipeptidyl groups protected at the amino terminal moiety with benzyloxycarbonyl or tosylureido moieties. The best compound obtained (ts-D-Phe-Pro-sulfanilyl-dicyandiamide) showed inhibition constants of 9 nM against thrombin and 1400 nM against trypsin. pKa measurements showed that the new derivatives reported here do indeed possess a reduced basicity, with the pKa of the modified guanidine moieties in the range 7.9-8.3 pKa units. Molecular mechanics calculations showed that the preferred tautomeric form of these compounds is of the type ArSO2N=C(NH2) NH-CN, probably allowing for the formation of favorable interaction between this new anchoring group and the active site amino acid residue Asp 189, critical for substrate/inhibitor binding to this type of serine protease. Thus, the main finding of the present paper is that the sulfonyldicyandiamide group may constitute an interesting alternative for obtaining weakly basic, potent thrombin inhibitors, which bind with less affinity to trypsin.  相似文献   
137.
Chondrocytes experience a dynamic extracellular osmotic environment during normal joint loading when fluid is forced from the matrix, increasing the local proteoglycan concentration and therefore the ionic strength and osmolarity. To exist in such a challenging environment, chondrocytes must possess mechanisms by which cell volume can be regulated. In this study, we investigated the ability of bovine articular chondrocytes (BAC) to regulate cell volume during a hypo-osmotic challenge. We also examined the effect of hypo-osmotic stress on early signaling events including [Ca2+](i) and membrane currents. Changes in cell volume were measured by monitoring the fluorescence of calcein-loaded cells. [Ca2+](i) was quantified using fura-2, and membrane currents were recorded using patch clamp. BAC exhibited regulated volume decrease (RVD) when exposed to hypo-osmotic saline which was inhibited by Gd3+. Swelling stimulated [Ca2+](i) transients in BAC which were dependent on swelling magnitude. Gd3+, zero [Ca2+](o), and thapsigargin all attenuated the [Ca2+](i) response, suggesting roles for Ca2+ influx through stretch activated channels, and Ca2+ release from intracellular stores. Inward and outward membrane currents significantly increased during cell swelling and were inhibited by Gd3+. These results indicate that RVD in BAC may involve [Ca2+](i) and ion channel activation, both of which play pivotal roles in RVD in other cell types. These signaling pathways are also similar to those activated in chondrocytes subjected to other biophysical signals. It is possible, then, that these signaling events may also be involved in a mechanism by which mechanical loads are transduced into appropriate cellular responses by chondrocytes.  相似文献   
138.
The cutaneous sensory neurons of the ophthalmic lobe of the trigeminal ganglion are derived from two embryonic cell populations, the neural crest and the paired ophthalmic trigeminal (opV) placodes. Pax3 is the earliest known marker of opV placode ectoderm in the chick. Pax3 is also expressed transiently by neural crest cells as they emigrate from the neural tube, and it is reexpressed in neural crest cells as they condense to form dorsal root ganglia and certain cranial ganglia, including the trigeminal ganglion. Here, we examined whether Pax3+ opV placode-derived cells behave like Pax3+ neural crest cells when they are grafted into the trunk. Pax3+ quail opV ectoderm cells associate with host neural crest migratory streams and form Pax3+ neurons that populate the dorsal root and sympathetic ganglia and several ectopic sites, including the ventral root. Pax3 expression is subsequently downregulated, and at E8, all opV ectoderm-derived neurons in all locations are large in diameter, and virtually all express TrkB. At least some of these neurons project to the lateral region of the dorsal horn, and peripheral quail neurites are seen in the dermis, suggesting that they are cutaneous sensory neurons. Hence, although they are able to incorporate into neural crest-derived ganglia in the trunk, Pax3+ opV ectoderm cells are committed to forming cutaneous sensory neurons, their normal fate in the trigeminal ganglion. In contrast, Pax3 is not expressed in neural crest-derived neurons in the dorsal root and trigeminal ganglia at any stage, suggesting either that Pax3 is expressed in glial cells or that it is completely downregulated before neuronal differentiation. Since Pax3 is maintained in opV placode-derived neurons for some considerable time after neuronal differentiation, these data suggest that Pax3 may play different roles in opV placode cells and neural crest cells.  相似文献   
139.
Blood plasma is the major vehicle by which metabolites are transported around the body in mammalian species, and chemical analysis of plasma can provide a wealth of information relating to the biochemical status of an individual and is important for diagnostic purposes. However, plasma is very complex in physicochemical terms because it is composed of a range of organic and inorganic constituents with a wide range of molecular weights and chemical classes and this makes analysis non-trivial. It is now well established that high-resolution (1)H NMR spectroscopy of blood plasma provides useful qualitative and quantitative biochemical information relating to metabolic disorders. However, one of the problems encountered in NMR spectroscopic analysis of blood plasma is the extensive peak overlap or presence of broad macromolecule peaks in the (1)H NMR spectrum, which can severely limit the amount of obtainable information. Even with spectroscopic editing, information relating to low-molecular-weight (MW) metabolites is frequently lost. Therefore, the efficiency of a range of conventional protein removal methods, in combination with the use of one- and two-dimensional NMR spectroscopic methods for evaluation, have been compared for the extraction of NMR-observable low-MW metabolites. It has been shown that these "deproteinization" methods vary considerably in recovery of low MW metabolites and a judicious choice is crucial for optimal extraction of a given analyte. The results presented here show that while ultrafiltration provides the "safest" method of plasma deproteinization, the signal-to-noise ratio of the resultant (1)H NMR spectra is poor. On the other hand, acetonitrile precipitation at physiological pH allows the detection of more low-MW metabolites and at higher concentrations than any other method and provides the further advantages of being a rapid and simple procedure.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号