首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2004篇
  免费   176篇
  国内免费   1篇
  2181篇
  2023年   9篇
  2022年   21篇
  2021年   43篇
  2020年   27篇
  2019年   31篇
  2018年   30篇
  2017年   23篇
  2016年   64篇
  2015年   103篇
  2014年   91篇
  2013年   139篇
  2012年   148篇
  2011年   165篇
  2010年   84篇
  2009年   75篇
  2008年   124篇
  2007年   122篇
  2006年   134篇
  2005年   92篇
  2004年   93篇
  2003年   118篇
  2002年   88篇
  2001年   21篇
  2000年   9篇
  1999年   24篇
  1998年   19篇
  1997年   14篇
  1996年   20篇
  1995年   15篇
  1994年   14篇
  1993年   20篇
  1992年   11篇
  1991年   17篇
  1990年   15篇
  1989年   14篇
  1988年   23篇
  1987年   8篇
  1986年   8篇
  1985年   9篇
  1984年   14篇
  1983年   7篇
  1982年   5篇
  1981年   11篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1976年   4篇
  1973年   5篇
  1971年   3篇
  1931年   3篇
排序方式: 共有2181条查询结果,搜索用时 15 毫秒
71.

Background  

We are interested in understanding the locational distribution of genes and their functions in genomes, as this distribution has both functional and evolutionary significance. Gene locational distribution is known to be affected by various evolutionary processes, with tandem duplication thought to be the main process producing clustering of homologous sequences. Recent research has found clustering of protein structural families in the human genome, even when genes identified as tandem duplicates have been removed from the data. However, this previous research was hindered as they were unable to analyse small sample sizes. This is a challenge for bioinformatics as more specific functional classes have fewer examples and conventional statistical analyses of these small data sets often produces unsatisfactory results.  相似文献   
72.
DNA of yeast artificial chromosomes (YACs) was prepared for microinjection by separation from most of the natural yeast chromosomes on a pulsed-field gel, treatment with agarase, and centrifugation. A salt concentration of 100 mM NaCl was necessary to protect the DNA from shear during these procedures. Injection of a 590-kb YAC, yGART2, into Chinese hamster ovary cells gave rise to cells expressing the 40-kb human GART gene carried on the YAC. Nine of 12 cell lines analyzed contained an intact stretch of at least 110 kb of YAC DNA surrounding the GART gene, and one cell line contained at least 480 kb, but not the entire 590 kb, intact. Mouse L A-9 cells were similarly injected with DNA of a 230-kb YAC containing the human β-globin gene cluster and a mammalian selectable marker. Seven of 10 of the resulting cell lines contained both YAC vector arms plus the intact 140-kb SfiI fragment spanning the β-globin gene. Three cell lines were analyzed by Rec A-assisted restriction endonuclease (RARE) cleavage and found to contain the entire intact 210-kb YAC insert. Introduction of similarly prepared DNA into mammalian cells by lipofection gave rise to cell lines with multiple YAC fragments that were generally shorter than the YAC fragments found in microinjected cell lines. The results show that microinjection of gel-purified YAC DNA into mammalian cells is an efficient method of transferring DNA fragments several hundred kilobase pairs in size into mammalian cells.  相似文献   
73.
Clare EL 《PloS one》2011,6(7):e21460
Levels of sequence divergence at mitochondrial loci are frequently used in phylogeographic analysis and species delimitation though single marker systems cannot assess bi-parental gene flow. In this investigation I compare the phylogeographic patterns revealed through the maternally inherited mitochondrial COI region and the paternally inherited 7(th) intron region of the Dby gene on the Y-chromosome in eight common Neotropical bat species. These species are diverse and include members of two families from the feeding guilds of sanguivores, nectarivores, frugivores, carnivores and insectivores. In each case, the currently recognized taxon is comprised of distinct, substantially divergent intraspecific mitochondrial lineages suggesting cryptic species complexes. In Chrotopterus auritus, and Saccopteryx bilineata I observed congruent patterns of divergence in both genetic regions suggesting a cessation of gene flow between intraspecific groups. This evidence supports the existence of cryptic species complexes which meet the criteria of the genetic species concept. In Glossophaga soricina two intraspecific groups with largely sympatric South American ranges show evidence for incomplete lineage sorting or frequent hybridization while a third group with a Central American distribution appears to diverge congruently at both loci suggesting speciation. Within Desmodus rotundus and Trachops cirrhosus the paternally inherited region was monomorphic and thus does not support or refute the potential for cryptic speciation. In Uroderma bilobatum, Micronycteris megalotis and Platyrrhinus helleri the gene regions show conflicting patterns of divergence and I cannot exclude ongoing gene flow between intraspecific groups. This analysis provides a comprehensive comparison across taxa and employs both maternally and paternally inherited gene regions to validate patterns of gene flow. I present evidence for previously unrecognized species meeting the criteria of the genetic species concept but demonstrate that estimates of mitochondrial diversity alone do not accurately represent gene flow in these species and that contact/hybrid zones must be explored to evaluate reproductive isolation.  相似文献   
74.
Francisella tularensis, the etiologic agent of tularemia and a Class A Select Agent, is divided into three subspecies and multiple subpopulations that differ in virulence and geographic distribution. Given these differences, there is a need to rapidly and accurately determine if a strain is F. tularensis and, if it is, assign it to subspecies and subpopulation. We designed TaqMan real-time PCR genotyping assays using eleven single nucleotide polymorphisms (SNPs) that were potentially specific to closely related groups within the genus Francisella, including numerous subpopulations within F. tularensis species. We performed extensive validation studies to test the specificity of these SNPs to particular populations by screening the assays across a set of 565 genetically and geographically diverse F. tularensis isolates and an additional 21 genetic near-neighbor (outgroup) isolates. All eleven assays correctly determined the genetic groups of all 565 F. tularensis isolates. One assay differentiates F. tularensis, F. novicida, and F. hispaniensis from the more genetically distant F. philomiragia and Francisella-like endosymbionts. Another assay differentiates F. tularensis isolates from near neighbors. The remaining nine assays classify F. tularensis-confirmed isolates into F. tularensis subspecies and subpopulations. The genotyping accuracy of these nine assays diminished when tested on outgroup isolates (i.e. non F. tularensis), therefore a hierarchical approach of assay usage is recommended wherein the F. tularensis-specific assay is used before the nine downstream assays. Among F. tularensis isolates, all eleven assays were highly sensitive, consistently amplifying very low concentrations of DNA. Altogether, these eleven TaqMan real-time PCR assays represent a highly accurate, rapid, and sensitive means of identifying the species, subspecies, and subpopulation of any F. tularensis isolate if used in a step-wise hierarchical scheme. These assays would be very useful in clinical, epidemiological, and/or forensic investigations involving F. tularensis.  相似文献   
75.
Diseases transmitted by mosquitoes have a devastating impact on global health and the situation is complicated due to difficulties with both existing control measures and the impact of climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. The Streptomyces phage phiC31 integrase system has been successfully adapted for site-directed transgene integration in a range of insects, thus overcoming many limitations due to size constraints and random integration associated with transposon-mediated transformation. Using this technology, we previously published the first site-directed transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 docking site at a defined genomic location. A second phase of genetic modification then achieved site-directed integration of an anti-malarial effector gene. In the current publication we report improved efficiency and utility of the phiC31 integrase system following the generation of Anopheles gambiae self-docking strains. Four independent strains, with docking sites at known locations on three different chromosome arms, were engineered to express integrase under control of the regulatory regions of the nanos gene from Anopheles gambiae. The resulting protein accumulates in the posterior oocyte to provide integrase activity at the site of germline development. Two self-docking strains, exhibiting significantly different levels of integrase expression, were assessed for site-directed transgene integration and found to demonstrate greatly improved survival and efficiency of transformation. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters to regulate their expression, enabling those offering maximum effect with minimum fitness cost to be identified. The improved technology we describe here will facilitate comparative studies of effector transgenes, allowing informed choices to be made that potentially lead to transmission blockade.  相似文献   
76.
77.
Accurate prediction of loads acting at the joint in total knee replacement (TKR) patients is key to developing experimental or computational simulations which evaluate implant designs under physiological loading conditions. In vivo joint loads have been measured for a small number of telemetric TKR patients, but in order to assess device performance across the entire patient population, a larger patient cohort is necessary. This study investigates the accuracy of predicting joint loads from joint kinematics. Specifically, the objective of the study was to assess the accuracy of internal–external (I–E) and anterior–posterior (A–P) joint load predictions from I–E and A–P motions under a given compressive load, and to evaluate the repeatability of joint load ratios (I–E torque to compressive force (I–E:C), and A–P force to compressive force (A–P:C)) for a range of compressive loading profiles. A tibiofemoral finite element model was developed and used to simulate deep knee bend, chair-rise and step-up activities for five patients. Root-mean-square (RMS) differences in I–E:C and A–P:C load ratios between telemetric measurements and model predictions were less than 1.10e–3 Nm/N and 0.035 N/N for all activities. I–E:C and A–P:C load ratios were consistently reproduced regardless of the compressive force profile applied (RMS differences less than 0.53e–3 Nm/N and 0.010 N/N, respectively). When error in kinematic measurement was introduced to the model, joint load predictions were forgiving to kinematic measurement error when conformity between femoral and tibial components was low. The prevalence of kinematic data, in conjunction with the analysis presented here, facilitates determining the scope of A–P and I–E joint loading ratios experienced by the TKR population.  相似文献   
78.
News     
  相似文献   
79.
80.
Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号