首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2031篇
  免费   181篇
  国内免费   1篇
  2023年   9篇
  2022年   21篇
  2021年   43篇
  2020年   27篇
  2019年   31篇
  2018年   31篇
  2017年   23篇
  2016年   65篇
  2015年   103篇
  2014年   92篇
  2013年   139篇
  2012年   149篇
  2011年   168篇
  2010年   87篇
  2009年   77篇
  2008年   125篇
  2007年   124篇
  2006年   135篇
  2005年   94篇
  2004年   93篇
  2003年   119篇
  2002年   90篇
  2001年   22篇
  2000年   9篇
  1999年   25篇
  1998年   19篇
  1997年   15篇
  1996年   21篇
  1995年   15篇
  1994年   15篇
  1993年   20篇
  1992年   11篇
  1991年   17篇
  1990年   15篇
  1989年   16篇
  1988年   24篇
  1987年   8篇
  1986年   9篇
  1985年   9篇
  1984年   14篇
  1983年   8篇
  1982年   5篇
  1981年   11篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1976年   4篇
  1973年   5篇
  1971年   3篇
  1931年   3篇
排序方式: 共有2213条查询结果,搜索用时 31 毫秒
991.
We report the first gene-based linkage map of Lupinus angustifolius (narrow-leafed lupin) and its comparison to the partially sequenced genome of Medicago truncatula. The map comprises 382 loci in 20 major linkage groups, two triplets, three pairs and 11 unlinked loci and is 1,846 cM in length. The map was generated from the segregation of 163 RFLP markers, 135 gene-based PCR markers, 75 AFLP and 4 AFLP-derived SCAR markers in a mapping population of 93 recombinant inbred lines, derived from a cross between domesticated and wild-type parents. This enabled the mapping of five major genes controlling key domestication traits in L. angustifolius. Using marker sequence data, the L. angustifolius genetic map was compared to the partially completed M. truncatula genome sequence. We found evidence of conserved synteny in some regions of the genome despite the wide evolutionary distance between these legume species. We also found new evidence of widespread duplication within the L. angustifolius genome.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorised users.  相似文献   
992.
Preterm delivery is the leading cause of perinatal mortality and morbidity. Current tocolytics target myometrial contractions, a late step in the labor cascade. Identifying earlier events in parturition may lead to more effective therapeutic strategies. We hypothesized that inflammatory events in decidua (the maternal-fetal interface), characterized by leucocyte infiltration, are an early event during term and preterm labor (PTL). Leucocyte abundance in decidua of human pregnancies was quantified following term labor and PTL (idiopathic and infection associated), in conjunction with investigation of temporal inflammatory events in rat uterus during the perilabor period and in PTL induced by mifepristone. In human decidua, macrophage numbers were 4-fold higher in term labor (P < 0.01) and 2.5-fold higher in non-infection-associated PTL (P < 0.05) than in term nonlaboring samples. Neutrophil abundance was unchanged with labor but elevated in PTL with infection (5- to 53-fold increase; P < 0.01). T and NK cells were more abundant in idiopathic PTL than TL (P < 0.05). In rat, decidual macrophage infiltration increased 4.5-fold 12 h prior to labor and remained elevated during labor and early postpartum (P < 0.01). Decidual infiltration preceded that of the myometrium and was 4-fold higher (P < 0.01). In rat PTL, decidual macrophage numbers were also elevated (P < 0.01) and exceeded those of the myometrium (P < 0.05). These studies show for the first time that leucocytes infiltrate decidua during labor at term and preterm, supporting a role for leucocyte-derived inflammatory mediators in decidual activation. In the rat, this occurred prior to labor, suggesting it is an early event during parturition and thus a potential target for intervention.  相似文献   
993.
Normal pregnancy is associated with the presence of circulating placental microvesicles (MVs). Increased MV shedding and altered immune activation are seen in patients with preeclampsia, suggesting that placental MVs may play a role in the pathophysiology of this disease. Therefore, the aim of this study was to investigate the activation of peripheral blood mononuclear cells (PBMCs) by MVs shed by first-trimester, normal term, and preeclamptic term placenta. First-trimester and preeclamptic term, but not normal term, placental-derived MVs activated PBMCs, as evidenced by elevated IL1B. Significant changes were also seen with several other cytokines and chemokines, and in general when compared to normal term MVs, preeclamptic MVs induced a greater pro-inflammatory response in PBMCs. Pretreatment of PBMCs with first-trimester or normal term placental MVs resulted in a dampened IL1B response to a subsequent lipopolysaccharide (LPS) challenge. In contrast, treatment of PBMCs with preeclamptic term placental MVs exacerbated the LPS response. This was also the case for several other cytokines and chemokines. These studies suggest that placental MVs can modulate basal peripheral immune cell activation and responsiveness to LPS during normal pregnancy, and that in preeclampsia this effect is exacerbated.  相似文献   
994.
Hypochlorous acid (HOCl) is a potent oxidant produced by the enzyme myeloperoxidase, which is released by neutrophils under inflammatory conditions. Although important in the immune system, HOCl can also damage host tissue, which contributes to the development of disease. HOCl reacts readily with free amino groups to form N-chloramines, which also cause damage in vivo, owing to the extracellular release of myeloperoxidase and production of HOCl. HOCl and N-chloramines react readily with cellular thiols, which causes dysfunction via enzyme inactivation and modulation of redox signaling processes. In this study, the ability of HOCl and model N-chloramines produced on histamine and ammonia at inflammatory sites, to oxidize specific thiol-containing proteins in human coronary artery endothelial cells was investigated. Using a proteomics approach with the thiol-specific probe, 5-iodoacetamidofluorescein, we show that several proteins including peptidylprolyl isomerase A (cyclophilin A), protein disulfide isomerase, glyceraldehyde-3-phosphate dehydrogenase and galectin-1 are particularly sensitive to oxidation by HOCl and N-chloramines formed at inflammatory sites. This will contribute to cellular dysfunction and may play a role in inflammatory disease pathogenesis.  相似文献   
995.
Carbohydrate-binding modules (CBMs) are ubiquitous components of glycoside hydrolases, which degrade polysaccharides in nature. CBMs target specific polysaccharides, and CBM binding affinity to cellulose is known to be proportional to cellulase activity, such that increasing binding affinity is an important component of performance improvement. To ascertain the impact of protein and glycan engineering on CBM binding, we use molecular simulation to quantify cellulose binding of a natively glycosylated Family 1 CBM. To validate our approach, we first examine aromatic-carbohydrate interactions on binding, and our predictions are consistent with previous experiments, showing that a tyrosine to tryptophan mutation yields a 2-fold improvement in binding affinity. We then demonstrate that enhanced binding of 3-6-fold over a nonglycosylated CBM is achieved by the addition of a single, native mannose or a mannose dimer, respectively, which has not been considered previously. Furthermore, we show that the addition of a single, artificial glycan on the anterior of the CBM, with the native, posterior glycans also present, can have a dramatic impact on binding affinity in our model, increasing it up to 140-fold relative to the nonglycosylated CBM. These results suggest new directions in protein engineering, in that modifying glycosylation patterns via heterologous expression, manipulation of culture conditions, or introduction of artificial glycosylation sites, can alter CBM binding affinity to carbohydrates and may thus be a general strategy to enhance cellulase performance. Our results also suggest that CBM binding studies should consider the effects of glycosylation on binding and function.  相似文献   
996.
A series of arylidene anabaseines were synthesized to probe the functional impact of hydrogen bonding on human α7 nicotinic acetylcholine receptor (nAChR) activation and desensitization. The aryl groups were either hydrogen bond acceptors (furans), donors (pyrroles), or neither (thiophenes). These compounds were tested against a series of point mutants of the ligand-binding domain residue Gln-57, a residue hypothesized to be proximate to the aryl group of the bound agonist and a putative hydrogen bonding partner. Q57K, Q57D, Q57E, and Q57L were chosen to remove the dual hydrogen bonding donor/acceptor ability of Gln-57 and replace it with hydrogen bond donating, hydrogen bond accepting, or nonhydrogen bonding ability. Activation of the receptor was compromised with hydrogen bonding mismatches, for example, pairing a pyrrole with Q57K or Q57L, or a furan anabaseine with Q57D or Q57E. Ligand co-applications with the positive allosteric modulator PNU-120596 produced significantly enhanced currents whose degree of enhancement was greater for 2-furans or -pyrroles than for their 3-substituted isomers, whereas the nonhydrogen bonding thiophenes failed to show this correlation. Interestingly, the PNU-120596 agonist co-application data revealed that for wild-type α7 nAChR, the 3-furan desensitized state was relatively stabilized compared with that of 2-furan, a reversal of the relationship observed with respect to the barrier for entry into the desensitized state. These data highlight the importance of hydrogen bonding on the receptor-ligand state, and suggest that it may be possible to fine-tune features of agonists that mediate state selection in the nAChR.  相似文献   
997.
In this study we generated a novel dual specific phosphatase 4 (DUSP4) deletion mouse using a targeted deletion strategy in order to examine the role of MAP kinase phosphatase-2 (MKP-2) in immune responses. Lipopolysaccharide (LPS) induced a rapid, time and concentration-dependent increase in MKP-2 protein expression in bone marrow-derived macrophages from MKP-2(+/+) but not from MKP-2(-/-) mice. LPS-induced JNK and p38 MAP kinase phosphorylation was significantly increased and prolonged in MKP-2(-/-) macrophages whilst ERK phosphorylation was unaffected. MKP-2 deletion also potentiated LPS-stimulated induction of the inflammatory cytokines, IL-6, IL-12p40, TNF-α, and also COX-2 derived PGE(2) production. However surprisingly, in MKP-2(-/-) macrophages, there was a marked reduction in LPS or IFNγ-induced iNOS and nitric oxide release and enhanced basal expression of arginase-1, suggesting that MKP-2 may have an additional regulatory function significant in pathogen-mediated immunity. Indeed, following infection with the intracellular parasite Leishmania mexicana, MKP-2(-/-) mice displayed increased lesion size and parasite burden, and a significantly modified Th1/Th2 bias compared with wild-type counterparts. However, there was no intrinsic defect in MKP-2(-/-) T cell function as measured by anti-CD3 induced IFN-γ production. Rather, MKP-2(-/-) bone marrow-derived macrophages were found to be inherently more susceptible to infection with Leishmania mexicana, an effect reversed following treatment with the arginase inhibitor nor-NOHA. These findings show for the first time a role for MKP-2 in vivo and demonstrate that MKP-2 may be essential in orchestrating protection against intracellular infection at the level of the macrophage.  相似文献   
998.
Mitochondria play an important role in the progression of apoptosis through the release of pro-apoptotic factors, such as cytochrome c, from the mitochondrial intermembrane space. During this process, mitochondrial networks are dramatically reorganised from long filamentous interconnected tubules into small punctate spheres. Whether remodelling of mitochondrial networks is necessary for apoptosis-associated cytochrome c release, or merely an accompanying process, has been a subject of debate. Here we discuss evidence for and against the role of mitochondrial fragmentation in the progression of apoptosis and highlight recent advances which indicate that mitochondrial fission is not a critical requirement for apoptosis-associated cytochrome c release. We also discuss an emerging role for Bcl-2 family members as regulators of mitochondrial fission and fusion dynamics, independent of the role of this family in the regulation of apoptosis.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号