首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   12篇
  2022年   2篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   9篇
  2011年   14篇
  2010年   9篇
  2009年   4篇
  2008年   4篇
  2007年   7篇
  2006年   8篇
  2005年   3篇
  2004年   6篇
  2003年   7篇
  2002年   9篇
  2001年   8篇
  2000年   8篇
  1999年   15篇
  1998年   3篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   6篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1981年   4篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   2篇
  1972年   5篇
  1971年   1篇
  1970年   4篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1961年   1篇
  1939年   1篇
排序方式: 共有209条查询结果,搜索用时 31 毫秒
71.
The early adaptive evolution of calmodulin   总被引:7,自引:0,他引:7  
Interaction between gene duplication and natural selection in molecular evolution was investigated utilizing a phylogenetic tree constructed by the parsimony procedure from amino acid sequences of 50 calmodulin- family protein members. The 50 sequences, belonging to seven protein lineages related by gene duplication (calmodulin itself, troponin-C, alkali and regulatory light chains of myosin, parvalbumin, intestinal calcium-binding protein, and glial S-100 phenylalanine-rich protein), came from a wide range of eukaryotic taxa and yielded a denser tree (more branch points within each lineage) than in earlier studies. Evidence obtained from the reconstructed pattern of base substitutions and deletions in these ancestral loci suggests that, during the early history of the family, selection acted as a transforming force on expressed genes among the duplicates to encode molecular sites with new or modified functions. In later stages of descent, however, selection was a conserving force that preserved the structures of many coadapted functional sites. Each branch of the family was found to have a unique average tempo of evolutionary change, apparently regulated through functional constraints. Proteins whose functions dictate multiple interaction with several other macromolecules evolved more slowly than those which display fewer protein-protein and protein-ion interactions, e.g., calmodulin and next troponin-C evolved at the slowest average rates, whereas parvalbumin evolved at the fastest. The history of all lineages, however, appears to be characterized by rapid rates of evolutionary change in earlier periods, followed by slower rates in more recent periods. A particularly sharp contrast between such fast and slow rates is found in the evolution of calmodulin, whose rate of change in earlier eukaryotes was manyfold faster than the average rate over the past 1 billion years. In fact, the amino acid replacements in the nascent calmodulin lineage occurred at residue positions that in extant metazoans are largely invariable, lending further support to the Darwinian hypothesis that natural selection is both a creative and a conserving force in molecular evolution.   相似文献   
72.
The genomic basis of facioscapulohumeral muscular dystrophy (FSHD) is of considerable interest because of the unique nature of the molecular mutation, which is a deletion within a large, complex DNA tandem array (D4Z4). This repeat maps within 30 kb of the 4q telomere. Although D4Z4 repeat units each contain an open reading frame that could encode a homeodomain protein, there is no evidence that the repeat is transcribed, and the underlying disease mechanism probably involves a position effect. A recent study has identified a protein complex bound to D4Z4 that contains YY1 and HMGB2, implicating a role for D4Z4 as a repressor. The 4q telomere has two variants, 4qA and 4qB. Although these alleles are present at almost equal frequencies in the general population, FSHD is associated only with the 4qA allele and never with 4qB. This suggests a functional difference between the telomere variants, either in predisposition to deletions within D4Z4 or in the pathological consequence of the deletion. Comparative mapping studies of the FSHD region in primates, mouse and Fugu rubripes have given insights into the evolutionary history of the D4Z4 repeat and of 4qter, although as yet they have not provided any solutions to the FSHD puzzle.  相似文献   
73.
Proteolytic enzymes have been used both to modify properties of the cell membrane and to dissociate cells from many tissues including pituitary (4, 5, 12). Exposure of secretory tissues to pronase can alter their secretory response. Thus incubation of pancreatic islets of Langerhans in the presence of low concentrations of pronase increased the subsequent release of insulin in the presence of stimulatory and nonstimulatory glucose concentrations (7). The purpose of the present investigation was to determine whether low concentrations of pronase have the same stimulatory effect on the release of a pituitary hormone, growth hormone. Such an effect on hormone release could be of some importance in view of the development of dissociated cell systems as models for the study of the control of hormone release (4, 5).  相似文献   
74.
75.
Selected non-specific plasma esterases in female BALB/c mice, separated by polyacrylamide gel electrophoresis, were qualitatively altered following treatment of the mice with diethylnitrosamine (DEN). These alterations include a decreased preference for naphthyl butyrate as a substrate relative to naphthyl acetate; decreased sensitivity to enhancement by divalent cations such as Ca2+, Mg2+, and Mn2; and an increased sensitivity to inhibition by eserine. All esterase species affected were also quantitatively altered and some were testosterone-dependent.  相似文献   
76.
77.
78.
Sepsis and multiple organ failure are common causes of death in patients admitted to intensive care units. The incidence of sepsis and associated mortalities has been steadily increasing over the past 20 years. Sepsis is a complex inflammatory condition, the precise causes of which are still poorly understood. Animal models of sepsis have the potential to cause substantial suffering, and many of them have been poorly representative of the human syndrome. However, a number of non-animal approaches, including in vitro, in silico and clinical studies, show promise for addressing this situation. This report is based on discussions held at an expert workshop convened by Focus on Alternatives and held in 2004 at the Wellcome Trust, London. It provides an overview of some non-animal approaches to sepsis research, including their strengths and weaknesses, and argues that they should be prioritised for further development.  相似文献   
79.
Ku70-Ku80 complex is the regulatory subunit of DNA-dependent protein kinase (DNA-PK) and plays an essential role in double-strand break repair following ionizing radiation (IR). It preferentially interacts with chromosomal breaks and protects DNA ends from nuclease attack. Here we show evidence that cells defective in Ku80 exhibit a significantly slow S phase progression following DNA damage. IR-induced retardation in S phase progression in Ku80-/- cells was not due to the lack of DNA-PK kinase activity because both wild-type cells and DNA-PKcs-deficient cells showed no such symptom. Instead, proliferating cell nuclear antigen (PCNA) dissociated from chromosomes following IR in Ku80-deficient cells but not in wild-type or DNA-PKcs-deficient cells. Treatment of HeLa cells with IR induced colocalization of the Ku complex with PCNA on chromosomes. Together, these results suggest that binding of the Ku complex at chromosomal breaks may be necessary to maintain the sliding clamps (PCNA) on chromatin, which would allow cells to resume DNA replication without a major delay following IR.  相似文献   
80.
Fanconi anemia (FA) is a complex, heterogeneous genetic disorder composed of at least 11 complementation groups. The FA proteins have recently been found to functionally interact with the cell cycle regulatory proteins ATM and BRCA1; however, the function of the FA proteins in cell cycle control remains incompletely understood. Here we show that the Fanconi anemia complementation group C protein (Fancc) is necessary for proper function of the DNA damage-induced G2/M checkpoint in vitro and in vivo. Despite apparently normal induction of the G2/M checkpoint after ionizing radiation, murine and human cells lacking functional FANCC did not maintain the G2 checkpoint as compared with wild-type cells. The increased rate of mitotic entry seen in Fancc-/-mouse embryo fibroblasts correlated with decreased inhibitory phosphorylation of cdc2 kinase on tyrosine 15. An increased inability to maintain the DNA damage-induced G2 checkpoint was observed in Fancc -/-; Trp53 -/-cells compared with Fancc -/-cells, indicating that Fancc and p53 cooperated to maintain the G2 checkpoint. In contrast, genetic disruption of both Fancc and Atm did not cooperate in the G2 checkpoint. These data indicate that Fancc and p53 in separate pathways converge to regulate the G2 checkpoint. Finally, fibroblasts lacking FANCD2 were found to have a G2 checkpoint phenotype similar to FANCC-deficient cells, indicating that FANCD2, which is activated by the FA complex, was also required to maintain the G2 checkpoint. Because a proper checkpoint function is critical for the maintenance of genomic stability and is intricately related to the function and integrity of the DNA repair process, these data have implications in understanding both the function of FA proteins and the mechanism of genomic instability in FA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号