首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   12篇
  2022年   2篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   9篇
  2011年   14篇
  2010年   9篇
  2009年   4篇
  2008年   4篇
  2007年   7篇
  2006年   8篇
  2005年   3篇
  2004年   6篇
  2003年   7篇
  2002年   9篇
  2001年   8篇
  2000年   8篇
  1999年   15篇
  1998年   3篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   6篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1981年   4篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   2篇
  1972年   5篇
  1971年   1篇
  1970年   4篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1961年   1篇
  1939年   1篇
排序方式: 共有209条查询结果,搜索用时 31 毫秒
11.
12.
Cells harvested from Fanconi anemia (FA) patients show an increased hypersensitivity to the multifunctional DNA damaging agent mitomycin C (MMC), which causes cross-links in DNA as well as 7,8-dihydro-8-oxoguanine (8-oxoG) adducts indicative of escalated oxidative DNA damage. We show here that the Drosophila multifunctional S3 cDNA, which encodes an N-glycosylase/apurinic/apyrimidinic (AP) lyase activity was found to correct the FA Group A (FA(A)) and FA Group C (FA(C)) sensitivity to MMC and hydrogen peroxide (H2O2). Furthermore, the Drosophila S3 cDNA was shown to protect AP endonuclease deficient E. coli cells against H(2)O(2) and MMC, and also protect 8-oxoG repair deficient mutM E. coli strains against MMC and H2O2 cell toxicity. Conversely, the human S3 protein failed to complement the AP endonuclease deficient E. coli strain, most likely because it lacks N-glycosylase activity for the repair of oxidatively-damaged DNA bases. Although the human S3 gene is clearly not the genetic alteration in FA cells, our results suggest that oxidative DNA damage is intimately involved in the overall FA phenotype, and the cytotoxic effect of selective DNA damaging agents in FA cells can be overcome by trans-complementation with specific DNA repair cDNAs. Based on these findings, we would predict other oxidative repair proteins, or oxidative scavengers, could serve as protective agents against the oxidative DNA damage that occurs in FA.  相似文献   
13.
14.
The mutagenic activity of cigarette smoke condensates (CSC) made from tobacco before and after removal of protein was assessed by the Ames Salmonella assay in bacterial strains TA98 and TA100. Removal of protein and peptides from flue-cured tobacco via water extraction followed by protease digestion reduced the mutagenicity of the resultant CSC by 80% in the TA98 strain and 50% in the TA100 strain. Similarly, reductions of 81% in TA98 and 54% in TA100 were seen following water extraction and protease digestion of burley tobacco. The significant reductions in Ames mutagenicity following protein removal suggest that protein pyrolysis products are a principal contributor to the genotoxicity of CSC as measured in this assay.  相似文献   
15.
Hemopoiesis is regulated in part by survival/apoptosis of hemopoietic stem/progenitor cells. Exogenously added stromal cell-derived factor-1 ((SDF-1)/CXC chemokine ligand (CXCL)12) enhances survival/antiapoptosis of myeloid progenitor cells in vitro. To further evaluate SDF-1/CXCL12 effects on progenitor cell survival, transgenic mice endogenously expressing SDF-1/CXCL12 under a Rous sarcoma virus promoter were produced. Myeloid progenitors (CFU-granulocyte-macrophage, burst-forming unit-erythroid, CFU-granulocyte-erythrocyte-megakaryocyte-monocyte) from transgenic mice were studied for in vitro survival in the context of delayed addition of growth factors. SDF-1-expressing transgenic myeloid progenitors were enhanced in survival and antiapoptosis compared with their wild-type littermate counterparts. Survival-enhancing effects were due to release of low levels of SDF-1/CXCL12 and mediated through CXCR4 and G(alpha)i proteins as determined by ELISA, an antagonist to CXCR4, Abs to CXCR4 and SDF-1, and pertussis toxin. Transgenic effects of low SDF-1/CXCR4 may be due to synergy of SDF-1/CXCL12 with other cytokines; low SDF-1/CXCL12 synergizes with low concentrations of other cytokines to enhance survival of normal mouse myeloid progenitors. Consistent with in vitro results, progenitors from SDF-1/CXCL12 transgenic mice displayed enhanced marrow and splenic myelopoiesis: greatly increased progenitor cell cycling and significant increases in progenitor cell numbers. These results substantiate survival effects of SDF-1/CXCL12, now extended to progenitors engineered to endogenously produce low levels of this cytokine, and demonstrate activity in vivo for SDF-1/CXCL12 in addition to cell trafficking.  相似文献   
16.
Urea-triazone nitrogen (N) is a stable solution resulting from a controlled reaction in aqueous medium of urea, formaldehyde, and ammonia which contains at least 25% total N. This N source contains no more than 40%, nor less than 5%, of total N from unreacted urea and not less that 40% from triazone. All other N shall be derived from water-soluble dissolved reaction products of the above reactants. It is a source of slowly available N. The rate of mineralization of urea-triazone is about 66% that of urea after 8 days when incorporated in a Munjor sandy loam. Ammonia volatilization losses of N applied as urea-triazone were about 41% of those from urea on a Cecil sandy loam in the first week after application. N leaching losses through saturated Yolo loam columns of urea-triazone were about two thirds that of urea or nitrate N. This N source has proven to be a safer and more effective material for direct application on plant foliage. Tomato growth was enhanced with foliar application of urea-triazone relative to that obtained from ammonium nitrate or urea. The stability of this N source from potential losses via ammonia volatilization and nitrate leaching when soil applied is also documented by results from university trials.  相似文献   
17.
To understand the requirements for binding to G protein betagamma subunits, phage-displayed random peptide libraries were screened using immobilized biotinylated betagamma as the target. Selected peptides were grouped into four different families based on their sequence characteristics. One group (group I) had a clear conserved motif that has significant homology to peptides derived from phospholipase C beta (PLC beta) and to a short motif in phosducin that binds to G protein beta subunits. The other groups had weaker sequence homologies or no homology to the group I sequences. A synthetic peptide from the strongest consensus group blocked activation of PLC by G protein betagamma subunits. The peptide did not block betagamma-mediated inhibition of voltage-gated calcium channels and had little effect on betagamma-mediated inhibition of Gs-stimulated type I adenylate cyclase. Competition experiments indicated that peptides from all four families bound to a single site on betagamma. These peptides may bind to a protein-protein interaction 'hot spot' on the surface of betagamma subunits that is used by a subclass of effectors.  相似文献   
18.
Clapp CH  McKown J  Xu H  Grandizio AM  Yang G  Fayer J 《Biochemistry》2000,39(10):2603-2611
Previous work has demonstrated that the ferric form of soybean lipoxygenase-1 will catalyze an elimination reaction on 12-iodo-cis-9-octadecenoic acid (12-IODE) to produce 9, 11-octadecadienoic acid and iodide ion. Elimination is accompanied by irreversible inactivation of the enzyme on 1 out of 10 turnovers. In the present work, 11,11-dideuterio-12-IODE (D(2)-12-IODE) was synthesized and used to demonstrate that both the elimination reaction and inactivation of the enzyme exhibit very large kinetic isotope effects. The rates with the deuterated compound are so low that the isotope effects are difficult to quantify, but they appear to be comparable to the isotope effects previously observed for the normal reaction catalyzed by lipoxygenase and much larger than can be explained by zero-point energy considerations. ESR spectroscopy was used to demonstrate that 12-IODE can reduce ferric lipoxygenase to the ferrous form, and a large isotope effect on this process was observed with D(2)-12-IODE. It is proposed that the pathway leading to reduction and inactivation by 12-IODE is initiated by homolytic cleavage of the C(11)-H bond. Elimination could be initiated either by homolytic or by heterolytic cleavage of this bond. The results suggest that very large isotope effects may be a general feature of C-H bond cleavages catalyzed by this enzyme.  相似文献   
19.
Prolactin (PRL), originally associated with milk secretion, is now known to possess a wide variety of biological actions and diverse sites of production beyond the pituitary. Proteolytic cleavage is a common post-translational modification that can either activate precursor proteins or confer upon the peptide fragment unique biological actions not exerted by the parent molecule. Recent studies have demonstrated that the 16-kDa N-terminal proteolytic cleavage product of PRL (16K-PRL) acts as a potent inhibitor of angiogenesis. Despite previous demonstrations of 16K-PRL production in vivo, biological functions beyond its antiangiogenic actions remain unknown. Here we show that 16K-PRL, but not full-length PRL, acts to promote the expression of the inducible isoform of nitric oxide synthase (iNOS) and nitric oxide (*NO) production by pulmonary fibroblasts and alveolar type II cells with potency comparable with the proinflammatory cytokines interleukin-1beta, interferon gamma, and tumor necrosis factor alpha. The differential effect of 16K-PRL versus PRL occurs through a receptor distinct from known PRL receptors. Additionally, pulmonary fibroblasts express the PRL gene and endogenously produce 16K-PRL, suggesting that this pathway may serve both autocrine and paracrine roles in the regulation of *NO production. These results reveal that proteolytic cleavage of PRL confers upon this classical hormone potent iNOS inducing activity, suggesting its role in inflammatory/immune processes.  相似文献   
20.
Acharya  S; Rayborn  ME; Hollyfield  JG 《Glycobiology》1998,8(10):997-1006
Rod and cone photoreceptors project from the outer retinal surface into a carbohydrate-rich interphotoreceptor matrix (IPM). Unique IPM glycoconjugates are distributed around rods and cones. Wheat germ agglutinin (WGA) strongly decorates the rod matrix domains and weakly decorates the cone matrix domains. This study characterizes the major WGA-binding glycoprotein in the human IPM, which we refer to as SPACR (sialoprotein associated with cones and rods). SPACR, which has a molecular weight of 147 kDa, was isolated and purified from the IPM by lectin affinity chromatography. A polyclonal antibody to SPACR was prepared that colocalizes in tissue preparations with WGA-binding domains in the IPM. Sequential digestion of SPACR with N- and O- glycosidases results in a systematic increase in electrophorectic mobility, indicating the presence of both N- and O-linked glycoconjugates. Complete deglycosylation results in a reduction in the relative molecular mass of SPACR by about 30%. Analysis of lectin binding allowed us to identify some of the structural characteristics of SPACR glycoconjugates. Treatment with neuraminidase exposes Galbeta1- 3GalNAc disaccharide as indicated by positive peanut agglutinin (PNA) staining, accompanied by the loss of WGA staining. Maackia amurensis agglutinins (MAA-1 and MAA-2), specific for sialic acid in alpha2-3 linkage to Gal, bind SPACR, while Sambucus nigra agglutinin (SNA), specific for alpha2-6 linked sialic acid, does not, indicating that the dominant glycoconjugate determinant on SPACR is the O-linked carbohydrate, NeuAcalpha2-3Galbeta1-3GalNAc. The abundance of sialic acid in SPACR suggests that this glycoprotein may contribute substantially to the polyanionic nature of the IPM. The carbohydrate chains present on SPACR could also provide sites for extensive crosslinking and participate in the formation of the ordered IPM lattice that surrounds the elongate photoreceptors projecting from the outer retinal surface.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号