首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5266篇
  免费   389篇
  国内免费   1篇
  5656篇
  2023年   15篇
  2022年   41篇
  2021年   79篇
  2020年   42篇
  2019年   46篇
  2018年   53篇
  2017年   66篇
  2016年   111篇
  2015年   188篇
  2014年   201篇
  2013年   252篇
  2012年   353篇
  2011年   357篇
  2010年   229篇
  2009年   195篇
  2008年   303篇
  2007年   277篇
  2006年   260篇
  2005年   300篇
  2004年   252篇
  2003年   280篇
  2002年   267篇
  2001年   76篇
  2000年   55篇
  1999年   85篇
  1998年   87篇
  1997年   67篇
  1996年   51篇
  1995年   48篇
  1994年   54篇
  1993年   57篇
  1992年   75篇
  1991年   49篇
  1990年   47篇
  1989年   37篇
  1988年   51篇
  1987年   41篇
  1986年   26篇
  1985年   46篇
  1984年   50篇
  1983年   27篇
  1982年   36篇
  1981年   45篇
  1980年   35篇
  1979年   26篇
  1978年   31篇
  1977年   26篇
  1976年   20篇
  1974年   23篇
  1961年   11篇
排序方式: 共有5656条查询结果,搜索用时 15 毫秒
101.
Klebsiella K23 capsular polysaccharide has been investigated by the techniques of hydrolysis, methylation, Smith degradation-periodate oxidation, and base-catalysed degradation, either on the original or the carboxyl-reduced polysaccharide. The structure was found to consist of a tetrasaccharide repeating-unit, as shown below. The anomeric configurations of the sugar residues were determined by 1H-and 13C-n.m.r. spectroscopy on the original and degraded polysaccharides.
  相似文献   
102.
Mitochondria are remarkably dynamic organelles that migrate, divide and fuse. Cycles of mitochondrial fission and fusion ensure metabolite and mitochondrial DNA mixing and dictate organelle shape, number and bioenergetic functionality. There is mounting evidence that mitochondrial dysfunction is an early and causal event in neurodegeneration. Mutations in the mitochondrial fusion GTPases mitofusin 2 and optic atrophy 1, neurotoxins and oxidative stress all disrupt the cable-like morphology of functional mitochondria. This results in impaired bioenergetics and mitochondrial migration, and can trigger neurodegeneration. These findings suggest potential new treatment avenues for neurodegenerative diseases.  相似文献   
103.
Although a shift from fatty acids (FAs) to carbohydrates (CHOs) is considered beneficial for the diseased heart, it is unclear why subjects with FA beta-oxidation defects are prone to cardiac decompensation under stress conditions. The present study investigated potential alterations in the myocardial utilization of CHOs for energy production and anaplerosis in 12-wk-old peroxisome proliferator-activating receptor-alpha (PPARalpha) null mice (a model of FA beta-oxidation defects). Carbon-13 methodology was used to assess substrate flux through energy-yielding pathways in hearts perfused ex vivo at two workloads with a physiological substrate mixture mimicking the fed state, and real-time RT-quantitative polymerase chain reaction was used to document the expression of selected metabolic genes. When compared with that from control C57BL/6 mice, isolated working hearts from PPARalpha null mice displayed an impaired capacity to withstand a rise in preload (mimicking an increased venous return as it occurs during exercise) as reflected by a 20% decline in the aortic flow rate. At the metabolic level, beyond the expected shift from FA (5-fold down) to CHO (1.5-fold up; P < 0.001) at both preloads, PPARalpha null hearts also displayed 1) a significantly greater contribution of exogenous lactate and glucose and/or glycogen (2-fold up) to endogenous pyruvate formation, whereas that of exogenous pyruvate remained unchanged and 2) marginal alterations in citric acid cycle-related parameters. The lactate production rate was the only measured parameter that was affected differently by preloads in control and PPARalpha null mouse hearts, suggesting a restricted reserve for the latter hearts to enhance glycolysis when the energy demand is increased. Alterations in the expression of some glycolysis-related genes suggest potential mechanisms involved in this defective CHO metabolism. Collectively, our data highlight the importance of metabolic alterations in CHO metabolism associated with FA oxidation defects as a factor that may predispose the heart to decompensation under stress conditions even in the fed state.  相似文献   
104.
The region of western Georgia (Imereti) has been a major geographic corridor for human migrations during the Middle and Upper Palaeolithic (MP/UP). Knowledge of the MP and UP in this region, however, stems mostly from a small number of recent excavations at the sites of Ortvale Klde, Dzudzuana, Bondi, and Kotias Klde. These provide an absolute chronology for the Late MP and MP–UP transition, but only a partial perspective on the nature and timing of UP occupations, and limited data on how human groups in this region responded to the harsh climatic oscillations between 37,000–11,500 years before present. Here we report new UP archaeological sequences from fieldwork in Satsurblia cavein the same region. A series of living surfaces with combustion features, faunal remains, stone and bone tools, and ornaments provide new information about human occupations in this region (a) prior to the Last Glacial Maximum (LGM) at 25.5–24.4 ka cal. BP and (b) after the LGM at 17.9–16.2 ka cal. BP. The latter provides new evidence in the southern Caucasus for human occupation immediately after the LGM. The results of the campaigns in Satsurblia and Dzudzuana suggest that at present the most plausible scenario is one of a hiatus in the occupation of this region during the LGM (between 24.4–17.9 ka cal. BP). Analysis of the living surfaces at Satsurblia offers information about human activities such as the production and utilisation of lithics and bone tools, butchering, cooking and consumption of meat and wild cereals, the utilisation of fibers, and the use of certain woods. Microfaunal and palynological analyses point to fluctuations in the climate with consequent shifts in vegetation and the faunal spectrum not only before and after the LGM, but also during the two millennia following the end of the LGM.  相似文献   
105.
Restless legs syndrome (RLS) is a neurological disorder characterized by leg paresthesia associated with an irresistible urge to move that often interferes with nocturnal sleep, leading to chronic sleep deprivation. To map genes that may play a role in the vulnerability to RLS, a genomewide scan was conducted in a large French-Canadian family. Significant linkage was established on chromosome 12q, for a series of adjacent microsatellite markers with a maximum two-point LOD score of 3.42 (recombination fraction.05; P=6x10(-4); autosomal recessive mode of inheritance), whereas multipoint linkage calculations yielded a LOD score of 3.59. Haplotype analysis refined the genetic interval, positioning the RLS-predisposing gene in a 14.71-cM region between D12S1044 and D12S78. These findings represent the first mapping of a locus conferring susceptibility to RLS.  相似文献   
106.
International Journal of Primatology - Discoveries in recent decades indicate that the large papionin monkeys Paradolipopithecus and Procynocephalus are key members of the Late Pliocene –...  相似文献   
107.
In situ detection of animal and plant microRNAs   总被引:1,自引:0,他引:1  
  相似文献   
108.
The promoters of several E2F-regulated genes identified in plants contain a variety of E2F motifs, notably a composite element consisting of a "CDE-like element" C/GGCGG on one strand, described as repressor in animals, associated with an E2F element on the complementary strand. This detailed study throughout plant development using ribonucleotide reductase promoters, allows us to propose a model, where E2F and composite elements play a dual role. Such regulation is mainly conditioned by the availability of E2F factors in tissues and during the cell cycle in tobacco.  相似文献   
109.
Cellular proteolysis involves large oligomeric peptidases that play key roles in the regulation of many cellular processes. The cobalt-activated peptidase TET1 from the hyperthermophilic Archaea Pyrococcus horikoshii (PhTET1) was found to assemble as a 12-subunit tetrahedron and as a 24-subunit octahedral particle. Both quaternary structures were solved by combining x-ray crystallography and cryoelectron microscopy data. The internal organization of the PhTET1 particles reveals highly self-compartmentalized systems made of networks of access channels extended by vast catalytic chambers. The two edifices display aminopeptidase activity, and their organizations indicate substrate navigation mechanisms different from those described in other large peptidase complexes. Compared with the tetrahedron, the octahedron forms a more expanded hollow structure, representing a new type of giant peptidase complex. PhTET1 assembles into two different quaternary structures because of quasi-equivalent contacts that previously have only been identified in viral capsids.  相似文献   
110.
Biotin synthase (BioB) converts dethiobiotin into biotin by inserting a sulfur atom between C6 and C9 of dethiobiotin in an S-adenosylmethionine (SAM)-dependent reaction. The as-purified recombinant BioB from Escherichia coli is a homodimeric molecule containing one [2Fe-2S](2+) cluster per monomer. It is inactive in vitro without the addition of exogenous Fe. Anaerobic reconstitution of the as-purified [2Fe-2S]-containing BioB with Fe(2+) and S(2)(-) produces a form of BioB that contains approximately one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per monomer ([2Fe-2S]/[4Fe-4S] BioB). In the absence of added Fe, the [2Fe-2S]/[4Fe-4S] BioB is active and can produce up to approximately 0.7 equiv of biotin per monomer. To better define the roles of the Fe-S clusters in the BioB reaction, M?ssbauer and electron paramagnetic resonance (EPR) spectroscopy have been used to monitor the states of the Fe-S clusters during the conversion of dethiobiotin to biotin. The results show that the [4Fe-4S](2+) cluster is stable during the reaction and present in the SAM-bound form, supporting the current consensus that the functional role of the [4Fe-4S] cluster is to bind SAM and facilitate the reductive cleavage of SAM to generate the catalytically essential 5'-deoxyadenosyl radical. The results also demonstrate that approximately (2)/(3) of the [2Fe-2S] clusters are degraded by the end of the turnover experiment (24 h at 25 degrees C). A transient species with spectroscopic properties consistent with a [2Fe-2S](+) cluster is observed during turnover, suggesting that the degradation of the [2Fe-2S](2+) cluster is initiated by reduction of the cluster. This observed degradation of the [2Fe-2S] cluster during biotin formation is consistent with the proposed sacrificial S-donating function of the [2Fe-2S] cluster put forth by Jarrett and co-workers (Ugulava et al. (2001) Biochemistry 40, 8352-8358). Interestingly, degradation of the [2Fe-2S](2+) cluster was found not to parallel biotin formation. The initial decay rate of the [2Fe-2S](2+) cluster is about 1 order of magnitude faster than the initial formation rate of biotin, indicating that if the [2Fe-2S] cluster is the immediate S donor for biotin synthesis, insertion of S into dethiobiotin would not be the rate-limiting step. Alternatively, the [2Fe-2S] cluster may not be the immediate S donor. Instead, degradation of the [2Fe-2S] cluster may generate a protein-bound polysulfide or persulfide that serves as the immediate S donor for biotin production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号