首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   9篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   10篇
  2012年   15篇
  2011年   8篇
  2010年   6篇
  2009年   1篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   11篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1996年   4篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有138条查询结果,搜索用时 187 毫秒
41.

Background  

Cystinosis is an autosomal recessive disorder characterised by an intralysosomal accumulation of cystine, and affected individuals progress to end-stage renal failure before the age of ten. The causative gene, CTNS, was cloned in 1998 and the encoded protein, cystinosin, was predicted to be a lysosomal membrane protein.  相似文献   
42.
α1-Antichymotrypsin is encoded by the unique SERPINA3 gene in humans, while it is encoded by a cluster of eight closely related genes in cattle. BovSERPINA3 proteins present a high degree of similarity and significant divergences in the reactive centre loop (RCL) domains which are responsible for the antiprotease activity. In this study, we analysed their expression patterns in a range of cattle tissues. Even if their expression is ubiquitous, we showed that the expression levels of each serpin vary in different tissues of 15-month-old Charolais bulls. Our results led us to focus on bovSERPINA3-7, one of the two most divergent members of the bovSERPINA3 family. Expression analyses showed that bovSERPINA3-7 protein presents different tissue-specific patterns with diverse degrees of N-glycosylation. Using a specific antibody raised against bovSERPINA3-7, Western blot analysis revealed a specific 96 kDa band in skeletal muscle. BovSERPINA3-7 immunoprecipitation and mass spectrometry revealed that this 96 kDa band corresponds to a complex of bovSERPINA3-7 and creatine kinase M-type. Finally, we reported that the bovSERPINA3-7 protein is present in slow-twitch skeletal myofibres. Precisely, bovSERPINA3-7 specifically colocalized with myomesin at the M-band region of sarcomeres where it could interact with other components such as creatine kinase M-type. This study opens new prospects on the bovSERPINA3-7 function in skeletal muscle and promotes opportunities for further understanding of the physiological role(s) of serpins.  相似文献   
43.

Background

Although aberrant DNA methylation has been observed previously in acute lymphoblastic leukemia (ALL), the patterns of differential methylation have not been comprehensively determined in all subtypes of ALL on a genome-wide scale. The relationship between DNA methylation, cytogenetic background, drug resistance and relapse in ALL is poorly understood.

Results

We surveyed the DNA methylation levels of 435,941 CpG sites in samples from 764 children at diagnosis of ALL and from 27 children at relapse. This survey uncovered four characteristic methylation signatures. First, compared with control blood cells, the methylomes of ALL cells shared 9,406 predominantly hypermethylated CpG sites, independent of cytogenetic background. Second, each cytogenetic subtype of ALL displayed a unique set of hyper- and hypomethylated CpG sites. The CpG sites that constituted these two signatures differed in their functional genomic enrichment to regions with marks of active or repressed chromatin. Third, we identified subtype-specific differential methylation in promoter and enhancer regions that were strongly correlated with gene expression. Fourth, a set of 6,612 CpG sites was predominantly hypermethylated in ALL cells at relapse, compared with matched samples at diagnosis. Analysis of relapse-free survival identified CpG sites with subtype-specific differential methylation that divided the patients into different risk groups, depending on their methylation status.

Conclusions

Our results suggest an important biological role for DNA methylation in the differences between ALL subtypes and in their clinical outcome after treatment.  相似文献   
44.

Background

Target enrichment and resequencing is a widely used approach for identification of cancer genes and genetic variants associated with diseases. Although cost effective compared to whole genome sequencing, analysis of many samples constitutes a significant cost, which could be reduced by pooling samples before capture. Another limitation to the number of cancer samples that can be analyzed is often the amount of available tumor DNA. We evaluated the performance of whole genome amplified DNA and the power to detect subclonal somatic single nucleotide variants in non-indexed pools of cancer samples using the HaloPlex technology for target enrichment and next generation sequencing.

Results

We captured a set of 1528 putative somatic single nucleotide variants and germline SNPs, which were identified by whole genome sequencing, with the HaloPlex technology and sequenced to a depth of 792–1752. We found that the allele fractions of the analyzed variants are well preserved during whole genome amplification and that capture specificity or variant calling is not affected. We detected a large majority of the known single nucleotide variants present uniquely in one sample with allele fractions as low as 0.1 in non-indexed pools of up to ten samples. We also identified and experimentally validated six novel variants in the samples included in the pools.

Conclusion

Our work demonstrates that whole genome amplified DNA can be used for target enrichment equally well as genomic DNA and that accurate variant detection is possible in non-indexed pools of cancer samples. These findings show that analysis of a large number of samples is feasible at low cost, even when only small amounts of DNA is available, and thereby significantly increases the chances of indentifying recurrent mutations in cancer samples.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-856) contains supplementary material, which is available to authorized users.  相似文献   
45.
Septins are conserved GTPases that form filaments and are required for cell division. During interphase, septin filaments associate with cellular membrane and cytoskeleton networks, yet the functional significance of these associations have, to our knowledge, remained unknown. We recently discovered that different septins, SEPT2 and SEPT11, regulate the InlB-mediated entry of Listeria monocytogenes into host cells. Here we address the role of SEPT2 and SEPT11 in the InlB-Met interactions underlying Listeria invasion to explore how septins modulate surface receptor function. We observed that differences in InlB-mediated Listeria entry correlated with differences in Met surface expression caused by septin depletion. Using atomic force microscopy on living cells, we show that septin depletion significantly reduced the unbinding force of InlB-Met interaction and the viscosity of membrane tethers at locations where the InlB-Met interaction occurs. Strikingly, the same order of difference was observed for cells in which the actin cytoskeleton was disrupted. Consistent with a proposed role of septins in association with the actin cytoskeleton, we show that cell elasticity is decreased upon septin or actin inactivation. Septins are therefore likely to participate in anchorage of the Met receptor to the actin cytoskeleton, and represent a critical determinant in surface receptor function.  相似文献   
46.
The diagnostic of Amyotrophic lateral sclerosis (ALS) remains based on clinical and neurophysiological observations. The actual delay between the onset of the symptoms and diagnosis is about 1 year, preventing early inclusion of patients into clinical trials and early care of the disease. Therefore, finding biomarkers with high sensitivity and specificity remains urgent. In our study, we looked for peptide biomarkers in plasma samples using reverse phase magnetic beads (C18 and C8) and MALDI-TOF mass spectrometry analysis. From a set of ALS patients (n=30) and healthy age-matched controls (n=30), C18- or C8-SVM-based models for ALS diagnostic were constructed on the base of the minimum of the most discriminant peaks. These two SVM-based models end up in excellent separations between the 2 groups of patients (recognition capability overall classes > 97%) and classify blinded samples (10 ALS and 10 healthy age-matched controls) with very high sensitivities and specificities (>90%). Some of these discriminant peaks have been identified by Mass Spectrometry (MS) analyses and correspond to (or are fragments of) major plasma proteins, partly linked to the blood coagulation.  相似文献   
47.
The synthesis of phytochelatins (PC) represents a major metal and metalloid detoxification mechanism in various species. PC most likely play a role in the distribution and accumulation of Cd and possibly other metals. However, to date, no studies have investigated the phytochelatin synthase (PCS) genes and their expression in the Cd-hyperaccumulating species. We used functional screens in two yeast species to identify genes expressed by two Cd hyperaccumulators (Arabidopsis halleri and Thlaspi caerulescens) and involved in cellular Cd tolerance. As a result of these screens, PCS genes were identified for both species. PCS1 was in each case the dominating cDNA isolated. The deduced sequences of AhPCS1 and TcPCS1 are very similar to AtPCS1 and their identity is particularly high in the proposed catalytic N-terminal domain. We also identified in A. halleri and T. caerulescens orthologues of AtPCS2 that encode functional PCS. As compared to A. halleri and A. thaliana, T. caerulescens showed the lowest PCS expression. Furthermore, concentrations of PC in Cd-treated roots were the highest in A. thaliana, intermediate in A. halleri and the lowest in T. caerulescens. This mirrors the known capacity of these species to translocate Cd to the shoot, with T. caerulescens being the best translocator. Very low or undetectable concentrations of PC were measured in A. halleri and T. caerulescens shoots, contrary to A. thaliana. These results suggest that extremely efficient alternative Cd sequestration pathways in leaves of Cd hyperaccumulators prevent activation of PC synthase by Cd2+ ions.  相似文献   
48.
49.
Recognition of bacteria by metazoans is mediated by receptors that recognize different types of microorganisms and elicit specific cellular responses. The soil amoebae Dictyostelium discoideum feeds upon a variable mixture of environmental bacteria, and it is expected to recognize and adapt to various food sources. To date, however, no bacteria‐sensing mechanisms have been described. In this study, we isolated a Dictyostelium mutant (fspA KO) unable to grow in the presence of non‐capsulated Klebsiella pneumoniae bacteria, but growing as efficiently as wild‐type cells in the presence of other bacteria, such as Bacillus subtilis. fspA KO cells were also unable to respond to K. pneumoniae and more specifically to bacterially secreted folate in a chemokinetic assay, while they responded readily to B. subtilis. Remarkably, both WT and fspA KO cells were able to grow in the presence of capsulated LM21 K. pneumoniae, and responded to purified capsule, indicating that capsule recognition may represent an alternative, FspA‐independent mechanism for K. pneumoniae sensing. When LM21 capsule synthesis genes were deleted, growth and chemokinetic response were lost for fspA KO cells, but not for WT cells. Altogether, these results indicate that Dictyostelium amoebae use specific recognition mechanisms to respond to different K. pneumoniae elements.  相似文献   
50.
Epidemiological studies have demonstrated an inverse relationship between selenium (Se) intake and cancer incidence and/or mortality. However, the molecular mechanisms underlying the cancer chemopreventive activity of Se compounds remain largely unknown. The objective of this study was to investigate the effect of low doses of Se on the stimulation of DNA repair systems in response to four different qualities of DNA damage. P53-proficient LNCaP human prostate adenocarcinoma cells were grown either untreated or in the presence of low concentrations of two Se compounds (30° nM sodium selenite, or 10 μM selenomethionine) and exposed to UVA, H2O2, methylmethane sulfonate (MMS) or UVC. Cell viability as well as DNA damage induction and repair were evaluated by the alkaline Comet assay. Overall, Se was shown to be a very potent protector against cell toxicity and genotoxicity induced by oxidative stress (UVA or H2O2) but not from the agents that induce other types of deleterious lesions (MMS or UVC). Furthermore, Se-treated cells exhibited increased oxidative DNA repair activity, indicating a novel mechanism of Se action. Therefore, the benefits of Se could be explained by a combination of antioxidant activity, the reduction in DNA damage and the enhancement of oxidative DNA repair capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号