首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   9篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   10篇
  2012年   15篇
  2011年   8篇
  2010年   6篇
  2009年   1篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   11篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1996年   4篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
31.
ABC transporters from the multidrug resistance-associated protein (MRP) subfamily are glutathione S-conjugate pumps exhibiting a broad substrate specificity illustrated by numerous xenobiotics, such as anticancer drugs, herbicides, pesticides and heavy metals. The engineering of MRP transporters into plants might be interesting either to reduce the quantity of xenobiotics taken up by the plant in the context of “safe-food” strategies or, conversely, in the development of phytoremediation strategies in which xenobiotics are sequestered in the vacuolar compartment. In this report, we obtained Arabidopsis transgenic plants overexpressing human MRP1. In these plants, expression of MRP1 did not increase plant resistance to antimony salts (Sb(III)), a classical glutathione-conjugate substrate of MRP1. However, the transporter was fully translated in roots and shoots, and targeted to the plasma membrane. In order to investigate the functionality of MRP1 in Arabidopsis, mesophyll cell protoplasts (MCPs) were isolated from transgenic plants and transport activities were measured by using calcein or Sb(III) as substrates. Expression of MRP1 at the plasma membrane was correlated with an increase in the MCPs resistance to Sb(III) and a limitation of the metalloid content in the protoplasts due to an improvement in Sb(III) efflux. Moreover, Sb(III) transport was sensitive to classical inhibitors of the human MRP1, such as MK571 or glibenclamide. These results demonstrate that a human ABC transporter can be functionally introduced in Arabidopsis, which might be useful, with the help of stronger promoters, to reduce the accumulation of xenobiotics in plants, such as heavy metals from multi-contaminated soils.  相似文献   
32.
The presence of heavy metal(loid)s in soils and waters is an important issue with regards to human health. Taking into account speciation problems, in the first part of this report, we investigated under identical growth conditions, yeast tolerance to a set of 15 cytotoxic metal(loid)s and radionuclides. The yeast cadmium factor 1 (YCF1) is an ATP-Binding Cassette transporter mediating the glutathione detoxification of heavy metals. In the second part, metal(loid)s that could be handled by YCF1 and a possible re-localisation of the transporter after heavy metal exposure were evaluated. YCF1 and a C-terminal GFP fusion, YCF1-GFP, were overexpressed in wild-type and Deltaycf1 strains. Both forms were functional, conferring a tolerance to Cd, Sb, As, Pb, Hg but not to Ni, Zn, Cu, Ag, Se, Te, Cr, Sr, Tc, U. Confocal experiments demonstrated that during exposure to cytotoxic metals, the localisation of YCF1-GFP was restricted to the yeast vacuolar membrane. In the last part, the role of glutathione in this resistance mechanism to metal(loid)s was studied. In the presence of heavy metals, application of buthionine sulfoximine (BSO), a well-known inhibitor of gamma-glutamylcysteine synthetase, led to a decrease in the cytosolic pool of GSH and to a limitation of yeast growth. Surprisingly, BSO was able to phenocopy the deletion of gamma-glutamylcysteine synthetase after exposure to Cd but not to Sb or As. In the genetic context of gsh1 and gsh2 yeast mutants, the critical role of GSH for Cd, As, Sb and Hg tolerance was compared to that of wild-type and Deltaycf1.  相似文献   
33.

Background  

Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States and is caused by a range of uropathogens. Biofilm formation by uropathogens that cause CAUTI is often mediated by cell surface structures such as fimbriae. In this study, we characterised the genes encoding type 3 fimbriae from CAUTI strains of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Citrobacter koseri and Citrobacter freundii.  相似文献   
34.
The SufI protein and the trimethylamine N-oxide reductase (TorA) are the two best-characterized prototype proteins exported by the Escherichia coli TAT system. Whereas SufI does not contain cofactors, TorA is a molybdo-enzyme and the acquisition of the molybdo-cofactor is a prerequisite for its translocation. The overproduction of each protein leads to the saturation of its translocation, but it was unknown if the overproduction of one substrate could saturate the TAT apparatus and block thus the translocation of other TAT substrates. Here, we showed that the overproduction of SufI saturated only its own translocation, but had no effect of the translocation of TorA and other TAT substrate analyzed. To dissect the saturation mechanism of TorA translocation, we shortened by about one-third of the TorA protein and removed nine consensus molybdo-cofactor-binding ligands. Like SufI, the truncated TorA (TorA502) did not contain cofactor and would not compete with the full length TorA for molybdo-cofactor acquisition. The overproduction of TorA502 completely inhibited the export of the full length TorA and dimethyl sulfoxide (DMSO) reductase, but had no effect on the translocation of SufI, nitrate-induced formate dehydrogenase and hydrogenase-2. Importantly, deletion of the twin-arginine signal peptide of TorA502 abolished the inhibitory effect. Moreover, the overproduction of the TorA signal peptide fused to the green fluorescence protein (GFP) was sufficient to block the TorA translocation. These results demonstrated that the twin-arginine signal peptide of the TorA protein specifically inhibits the translocation of a subset of TAT substrates, probably at the step of their targeting to the TAT apparatus.  相似文献   
35.
In this investigation, we examined the effects of different unsaturated fatty acid compositions of Saccharomyces cerevisiae on the growth-inhibiting effects of ethanol. The unsaturated fatty acid (UFA) composition of S. cerevisiae is relatively simple, consisting almost exclusively of the mono-UFAs palmitoleic acid (Delta(9)Z-C(16:1)) and oleic acid (Delta(9)Z-C(18:1)), with the former predominating. Both UFAs are formed in S. cerevisiae by the oxygen- and NADH-dependent desaturation of palmitic acid (C(16:0)) and stearic acid (C(18:0)), respectively, catalyzed by a single integral membrane desaturase encoded by the OLE1 gene. We systematically altered the UFA composition of yeast cells in a uniform genetic background (i) by genetic complementation of a desaturase-deficient ole1 knockout strain with cDNA expression constructs encoding insect desaturases with distinct regioselectivities (i.e., Delta(9) and Delta(11)) and substrate chain-length preferences (i.e., C(16:0) and C(18:0)); and, (ii) by supplementation of the same strain with synthetic mono-UFAs. Both experimental approaches demonstrated that oleic acid is the most efficacious UFA in overcoming the toxic effects of ethanol in growing yeast cells. Furthermore, the only other UFA tested that conferred a nominal degree of ethanol tolerance is cis-vaccenic acid (Delta(11)Z-C(18:1)), whereas neither Delta(11)Z-C(16:1) nor palmitoleic acid (Delta(9)Z-C(16:1)) conferred any ethanol tolerance. We also showed that the most ethanol-tolerant transformant, which expresses the insect desaturase TniNPVE, produces twice as much oleic acid as palmitoleic acid in the absence of ethanol and undergoes a fourfold increase in the ratio of oleic acid to palmitoleic acid in response to exposure to 5% ethanol. These findings are consistent with the hypothesis that ethanol tolerance in yeast results from incorporation of oleic acid into lipid membranes, effecting a compensatory decrease in membrane fluidity that counteracts the fluidizing effects of ethanol.  相似文献   
36.
Multifunctionality of plant ABC transporters – more than just detoxifiers   总被引:20,自引:0,他引:20  
The ABC-transporter superfamily is one of the largest protein families, and members can be found in bacteria, fungi, plants and animals. The first reports on plant ABC transporters showed that they are implicated in detoxification processes. The recent completion of the genomic sequencing of Arabidopsis thaliana (L.) Heynh. [Arabidopsis Genome Initiative (2000) Nature 408:796-815] showed that Arabidopsis contains more than 100 ABC-type proteins; 53 genes code for so-called full-size transporters, which are large proteins of about 150 kDa consisting of two hydrophobic and two hydrophilic domains. The large number of genes in the MDR/MRP and PDR5-like sub-clusters and the strong sequence homology found in many cases suggest functional redundancy. One reason for the high number of genes can be attributed to the duplication of large segments of Arabidopsis chromosomes. Recent results indicate that the function of this protein family is not restricted to detoxification processes. Plant ABC transporters have been demonstrated to participate in chlorophyll biosynthesis, formation of Fe/S clusters, stomatal movement, and probably ion fluxes; hence they may play a central role in plant growth and developmental processes.  相似文献   
37.
Gouffi K  Santini CL  Wu LF 《FEBS letters》2002,522(1-3):65-70
Misfolding of the prion protein yields amyloidogenic isoforms, and it shows exacerbating neuronal damage in neurodegenerative disorders including prion diseases. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) potently stimulate neuritogenesis and survival of neuronal cells in the central nervous system. Here, we tested these neuropeptides on neurotoxicity in PC12 cells induced by the prion protein fragment 106-126 [PrP (106-126)]. Concomitant application of neuropeptide with PrP(106-126) (5x10(-5) M) inhibited the delayed death of neuron-like PC12 cells. In particular, PACAP27 inhibited the neurotoxicity of PrP(106-126) at low concentrations (>10(-15) M), characterized by the deactivation of PrP(106-126)-stimulated caspase-3. The neuroprotective effect of PACAP27 was antagonized by the selective PKA inhibitor, H89, or the MAP kinase inhibitor, U0126. These results suggest that PACAP27 attenuates PrP(106-126)-induced delayed neurotoxicity in PC12 cells by activating both PKA and MAP kinases mediated by PAC1 receptor.  相似文献   
38.
Pradel N  Decorps A  Ye C  Santini CL  Wu LF 《Biochimie》2005,87(2):191-196
Escherichia coli FliP is a rare bacterial polytopic membrane protein synthesized with a cleavable, highly hydrophobic signal peptide. More hydrophilic Tat-dependent or Sec-dependent signal peptide is functionally capable of substituting for the FliP signal peptide, but a signal anchor of inner membrane protein fails to do so. To assess the intrinsic characteristics of the FliP signal peptide in mediating protein translocation, we fused it to green fluorescence protein and observed that the translocation of the chimera (FliPss-GFP) was dependent of Ffh, SecA, SecY and SecD. In addition, we showed for the first time the involvement of YidC in protein translocation across the inner membrane.  相似文献   
39.
CD1d-restricted NKT cells expressing invariant TCR alpha-chain rearrangements (iNKT cells) have been reported to be deficient in humans with a variety of autoimmune syndromes and in certain strains of autoimmune mice. In addition, injection of mice with alpha-galactosylceramide, a specific glycolipid agonist of iNKT cells, activates these T cells and ameliorates autoimmunity in several different disease models. Thus, deficiency and reduced function in iNKT cells are considered to be risk factors for the development of such diseases. In this study we report that the development of systemic lupus erythematosus in (New Zealand Black (NZB) x New Zealand White (NZW))F(1) mice was paradoxically associated with an expansion and activation of iNKT cells. Although young (NZB x NZW)F(1) mice had normal levels of iNKT cells, these expanded with age and became phenotypically and functionally hyperactive. Activation of iNKT cells in (NZB x NZW)F(1) mice in vivo or in vitro with alpha-galactosylceramide indicated that the immunoregulatory role of iNKT cells varied over time, revealing a marked increase in their potential to contribute to production of IFN-gamma with advancing age and disease progression. This evolution of iNKT cell function during the progression of autoimmunity may have important implications for the mechanism of disease in this model of systemic lupus erythematosus and for the development of therapies using iNKT cell agonists.  相似文献   
40.

Background  

Cystinosis is an autosomal recessive disorder characterised by an intralysosomal accumulation of cystine, and affected individuals progress to end-stage renal failure before the age of ten. The causative gene, CTNS, was cloned in 1998 and the encoded protein, cystinosin, was predicted to be a lysosomal membrane protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号