首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5586篇
  免费   508篇
  国内免费   1篇
  6095篇
  2023年   28篇
  2022年   76篇
  2021年   135篇
  2020年   83篇
  2019年   113篇
  2018年   119篇
  2017年   104篇
  2016年   172篇
  2015年   315篇
  2014年   330篇
  2013年   411篇
  2012年   494篇
  2011年   480篇
  2010年   283篇
  2009年   252篇
  2008年   355篇
  2007年   326篇
  2006年   297篇
  2005年   327篇
  2004年   301篇
  2003年   256篇
  2002年   218篇
  2001年   50篇
  2000年   34篇
  1999年   45篇
  1998年   48篇
  1997年   29篇
  1996年   32篇
  1995年   21篇
  1994年   39篇
  1993年   21篇
  1992年   26篇
  1991年   24篇
  1990年   16篇
  1989年   17篇
  1988年   10篇
  1987年   16篇
  1986年   18篇
  1985年   10篇
  1984年   21篇
  1983年   7篇
  1982年   10篇
  1980年   11篇
  1979年   10篇
  1978年   9篇
  1977年   25篇
  1976年   12篇
  1974年   6篇
  1972年   8篇
  1971年   7篇
排序方式: 共有6095条查询结果,搜索用时 0 毫秒
141.
The literature concerning the metabolism of carbon compounds during the reduction, assimilation and translocation of nitrogen in root nodules of leguminous plants is reviewed. The reduction of dinitrogen requires an energy source (ATP) and a reluctant which are both supplied by respiratory catabolism of carbohydrates produced by the host plant. Photosynthates are also required to generate the carbon skeletons for amino acid or urcide synthesis during the assimilation of ammonia produced by the bacteria within the nodule tissue. Competition for photosynthates occurs between the bacteroids, nodule tissue and the various vegetative and reproductive sinks in the host plant. The nature of carbon compounds involved in these processes, their routes of metabolism, the mechanisms of control and the partitioning of metabolises between the various sites of utilization are only poorly understood. It is apparent that dinitrogen is reduced to ammonia in the bacteroids. Both fast- and slow-growing strains of Rhizobium possess the Entner-Doudoroff pathway of glucose catabolism, and some, if not all, enzymes of the Emden-Meyerhof pathway. Some bacterial cultures also metabolize carbon through the ketogluconate pathway but only the fast-growing strains of cultured rhizobia possess the key enzyme of the pentose phosphate pathway (6-phosphogluconate dehydrogenase). The host cells are thought to contain the complete Emden-Meyerhof pathway and tricarboxylic acid cycle, which provides the carbon skeletons for assimilation of the ammonia, formed by the bacteroids, into α-amino acids. A pathway of anapleurotic carbon conservation, operative in the host cells, synthesizes oxaloacetic acid through β-carboxylation of phosphoenol pyruvate. This process could be important in the recapture and assimilation of respired CO2 in the rhizosphere. The main route of assimilation of ammonia produced by the bacteroids would appear to be via the glutamine synthetase-glutamate synthase pathway in the host cells. However, glutamate dehydrogenase may also be involved in ammonia assimilation. These enzymes also occur in in vitro cultures of Rhizobium and in bacteroids where they presumably participate in the synthesis of amino acids for growth of the bacteria or bacteroids. Nitrogen assimilated into glutamine or glutamate is exported from the nodules in a variety of forms, which include asparagine, glutamine, aspartate, homoserine and allantoates, in proportions which depend on the legume species. Studies on regulation of the overall process have focussed on expression of bacteroid genes and on the control of enzyme activity, at the level of nitrogenase and enzymes of nitrogen assimilation in particular. However, due to the wide range of experimental techniques, environmental conditions and plant species which have been used, no clear conclusions can yet be drawn. The pathways of carbon flow in nitrogen metabolism, particularly in relation to the synthesis of ureides and the regulation of carbon metabolism, remain key areas for future research in symbiotic nitrogen fixation.  相似文献   
142.
143.
Decreasing dietary sodium intake, which can be achieved by reducing salt content in food, is recommended. Salt contributes to the taste of foods and makes them more enjoyable. Whether a food is liked or disliked is an important determinant of food intake, especially among children. However, the role of salt in children''s food acceptance has received little attention. The impact of salt content on children''s hedonic rating and intake of two foods was investigated in children. Using a within-subject crossover design, we recruited 75 children (8–11 years) to participate in five lunches in their school cafeteria. The target foods were green beans and pasta. The added salt content was 0, 0.6 or 1.2 g/100 g. The children''s intake (g) of all lunch items was measured. The children provided their hedonic rating of the food, a preference ranking and a saltiness ranking in the laboratory. Children could rank the foods according to salt content, and they preferred the two saltier options. A food-specific effect of salt content on intake was observed. Compared to the intermediate level (0.6 g salt/100 g), not adding salt decreased green bean intake (−21%; p = 0.002), and increasing the salt content increased pasta intake (+24%; p<0.0001). Structural Equation Modeling was used to model the relative weights of the determinants of intake. It showed that the primary driver of food intake was the child''s hunger; the second most important factor was the child''s hedonic rating of the food, regardless of its salt content, and the last factor was the child''s preference for the particular salt content of the food. In conclusion, salt content has a positive and food-specific effect on intake; it impacted food preferences and intake differently in children. Taking into account children''s preferences for salt instead of their intake may lead to excessive added salt.  相似文献   
144.
Harlequin ichthyosis (HI) is a devastating autosomal recessive congenital skin disease. It has been vital to elucidate the biological importance of the protein ABCA12 in skin-barrier permeability, following the discovery that ABCA12 gene mutations can result in this rare disease. ATP-binding cassette transporter A12 (ABCA12) is a member of the subfamily of ATP-binding cassette transporters and functions to transport lipid glucosylceramides (GlcCer) to the extracellular space through lamellar granules (LGs). GlcCer are hydrolysed into hydroxyceramides extracellularly and constitute a portion of the extracellular lamellar membrane, lipid envelope and lamellar granules. In HI skin, loss of function of ABCA12 due to null mutations results in impaired lipid lamellar membrane formation in the cornified layer, leading to defective permeability of the skin barrier. In addition, abnormal lamellar granule formation (distorted shape, reduced in number or absent) could further cause aberrant production of LG-associated desquamation enzymes, which are likely to contribute to the impaired skin barrier in HI. This article reviews current opinions on the patho-mechanisms of ABCA12 action in HI and potential therapeutic interventions based on targeted molecular therapy and gene therapy strategies.  相似文献   
145.
Ca2+ and Mn2+ activate the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) by root microsomes of Vicia lens as they do in other similar systems. The preparation of microsomes in the presence of Mn2+ greatly increases their ability to convert ACC into ethylene, without addition of Mn2+ in the reaction mixture. Ca2+ does not have this property. The effect could not be attributed to Mn2+ entrapping into membrane vesicles (sonication followed by repelleting had no effect) but, possibly, in part to Mn2+-mediated binding to microsomes of a soluble factor favouring the conversion of ACC to C2H4. Although no direct correlation could be established in vitro between ethylene-forming-enzyme (EFE) and peroxidase activities, some soluble peroxidases might be this soluble factor. Mn2+ favoured attachment to membranes of some peroxidase activity from the soluble fraction and from commercial HRP and lipoxygenase. This binding effect of Mn2+ cannot be readily distinguished from its role in the generation of a chain of free radicals and in redox mechanisms.  相似文献   
146.
Splanchnic tissues are largely involved in the postprandial utilization of dietary amino acids, but little is yet known, particularly in humans, about the relative contributions of different splanchnic protein pools to splanchnic and total postprandial anabolism. Our aim was to develop a compartmental model that could distinguish dietary nitrogen (N) incorporation among splanchnic constitutive, plasma (splanchnic exported), and peripheral proteins after a mixed-protein meal in humans. Eight healthy subjects were fed a single mixed meal containing 15N-labeled soy protein, and dietary N postprandial kinetics were measured in plasma free amino acids, proteins, and urea and urinary urea and ammonia. These experimental data and others previously obtained for dietary N kinetics in ileal effluents under similar experimental conditions were used to develop the compartmental model. Six hours after the mixed-meal ingestion, 31.5, 7.5, and 21% of ingested N were predicted to be incorporated into splanchnic constitutive, splanchnic exported, and peripheral proteins, respectively. The contribution of splanchnic exported proteins to total splanchnic anabolism from dietary N was predicted to be approximately 19% and to remain steady throughout the simulation period. Model behavior and its predictions were strongly in line with current knowledge of the system and the scarce, specific data available in the literature. This model provides the first data concerning the anabolism of splanchnic constitutive proteins in the nonsteady postprandial state in humans. By use of only slightly invasive techniques, this model could help to assess how the splanchnic anabolism is modulated under different nutritional or pathophysiological conditions in humans.  相似文献   
147.
Melanin‐based coloration is widespread among vertebrates, yet the adaptive significance of such pigments remains elusive, particularly with regard to the link between melanin and immune‐mediated maternal effects. The aim of this study was to investigate whether melanin‐based coloration could signal the ability of mothers to mount a humoral response and to transfer maternal antibodies (Ab) to their young. We injected differently coloured (pale and dark) female feral pigeons (Columba livia) with Chlamydiae (a natural antigen) and Keyhole Limpet Haemocyanin (KLH, an artificial antigen), and found no significant difference in humoral response between differently coloured females. However, darker females transferred more Ab against Chlamydiae into their eggs than paler ones, despite similar circulating levels of Ab. In addition to this, melanin‐based coloration showed a high heritability value. This suggests that a genetically based coloured trait might be linked to the ability of females to transfer specific Ab against Chlamydiae (but not against KLH) to their offspring, independent of their ability to produce Ab. This suggests that transmission of maternal Ab is antigen dependent, and that melanin‐based coloration might signal female ability to transmit specific Ab against natural pathogens. © 2013 The Linnean Society of London  相似文献   
148.
Sexual compatibility limits the production of cacao plantations, being an important selection criterion in breeding programs. However, the current method for characterizing compatibility, based on the frequency of flower setting after controlled pollination, is time consuming, requiring a long time to identify self-compatible individuals. The identification of molecular markers in genomic regions can be an alternative to allow early selection of self-compatible plants. The present study aimed to identify SNP markers associated with sexual compatibility in cacao, by utilizing genome-wide association (GWAS) mapping. A population of 295 individuals mostly from third-generation breeding populations, but also founder clones, was used. This population was phenotypically characterized by hand pollinating 8199 flowers and evaluating the flower retention 15 days after pollination. In addition, leaf samples of each individual were collected and DNA extracted for genotyping by sequencing, generating 5301 SNP markers after cleaning. Genome-wide association mapping analysis was performed using Synbreed, GCTA, and TASSEL softwares. Significant markers associated to incompatibility, likely in strong linkage disequilibrium, were found within a region of 196 kb, in the proximal end of chromosome 4, suggesting the existence of a major gene in that region. However, this result should be validated in a larger population, considering that only 295 trees were used here. When the SNP effects were treated as random in the estimation process, many other regions in the genome appears to be involved with sexual incompatibility in cacao. Candidate genes were found not only in the proximal end of chromosome 4 but also spread in several other regions of the genome.  相似文献   
149.
External genital development begins with formation of paired genital swellings, which develop into the genital tubercle. Proximodistal outgrowth and axial patterning of the genital tubercle are coordinated to give rise to the penis or clitoris. The genital tubercle consists of lateral plate mesoderm, surface ectoderm, and endodermal urethral epithelium derived from the urogenital sinus. We have investigated the molecular control of external genital development in the mouse embryo. Previous work has shown that the genital tubercle has polarizing activity, but the precise location of this activity within the tubercle is unknown. We reasoned that if the tubercle itself is patterned by a specialized signaling region, then polarizing activity may be restricted to a subset of cells. Transplantation of urethral epithelium, but not genital mesenchyme, to chick limbs results in mirror-image duplication of the digits. Moreover, when grafted to chick limbs, the urethral plate orchestrates morphogenetic movements normally associated with external genital development. Signaling activity is therefore restricted to urethral plate cells. Before and during normal genital tubercle outgrowth, urethral plate epithelium expresses Sonic hedgehog (Shh). In mice with a targeted deletion of Shh, external genitalia are absent. Genital swellings are initiated, but outgrowth is not maintained. In the absence of Shh signaling, Fgf8, Bmp2, Bmp4, Fgf10, and Wnt5a are downregulated, and apoptosis is enhanced in the genitalia. These results identify the urethral epithelium as a signaling center of the genital tubercle, and demonstrate that Shh from the urethral epithelium is required for outgrowth, patterning, and cell survival in the developing external genitalia.  相似文献   
150.
During Drosophila oogenesis two distinct stem cell populations produce either germline cysts or the somatic cells that surround each cyst and separate each formed follicle. From analyzing daughterless (da) loss-of-function, overexpression and genetic interaction phenotypes, we have identified several specific requirements for da(+) in somatic cells during follicle formation. First, da is a critical regulator of somatic cell proliferation. Also, da is required for the complete differentiation of polar and stalk cells, and elevated da levels can even drive the convergence and extension that is characteristic of interfollicular stalks. Finally, da is a genetic regulator of an early checkpoint for germline cyst progression: Loss of da function inhibits normally occurring apoptosis of germline cysts at the region 2a/2b boundary of the germarium, while da overexpression leads to postmitotic cyst degradation. Collectively, these da functions govern the abundance and diversity of somatic cells as they coordinate with germline cysts to form functional follicles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号