首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5516篇
  免费   507篇
  国内免费   1篇
  2023年   24篇
  2022年   66篇
  2021年   134篇
  2020年   83篇
  2019年   113篇
  2018年   119篇
  2017年   104篇
  2016年   172篇
  2015年   315篇
  2014年   326篇
  2013年   405篇
  2012年   490篇
  2011年   478篇
  2010年   280篇
  2009年   248篇
  2008年   353篇
  2007年   325篇
  2006年   297篇
  2005年   327篇
  2004年   300篇
  2003年   253篇
  2002年   216篇
  2001年   46篇
  2000年   32篇
  1999年   43篇
  1998年   48篇
  1997年   29篇
  1996年   32篇
  1995年   21篇
  1994年   37篇
  1993年   21篇
  1992年   26篇
  1991年   24篇
  1990年   14篇
  1989年   14篇
  1988年   9篇
  1987年   12篇
  1986年   18篇
  1985年   10篇
  1984年   21篇
  1983年   7篇
  1982年   10篇
  1980年   11篇
  1979年   10篇
  1978年   9篇
  1977年   25篇
  1976年   12篇
  1974年   6篇
  1972年   8篇
  1971年   7篇
排序方式: 共有6024条查询结果,搜索用时 468 毫秒
981.
High amounts of phosphorus (P) are in soil of former farmland due to previous fertilizer additions. Draining these residues would provide conditions for grassland plant species diversity restoration amongst other ecosystem benefits. Nitrogen (N) fertilization followed by cutting with subsequent removal of biomass has been suggested as a P residue removal method. We present a general model of N and P ecosystem cycling with nutrients coupled in plant biomass. We incorporate major P pools and biological and physico-chemical fluxes around the system together with transfers into and out of the system given several decades of management. We investigate conditions where N addition and cutting accelerate fertilizer P draining. Cutting does not generally accelerate soil P depletion under short-term management because the benefits of biomass removal through decreased P mineralization occur on too long a timescale compared to cutting’s impact on the ability of plants to deplete nutrients. Short-term N fertilization lowers soil fertilizer P residues, provided plant growth remains N limited. In such situations, N fertilization without biomass removal increases soil organic P. Some scenarios show significant reductions in available P following N addition, but many situations record only marginal decreases in problematic soil P pools compared to the unfertilized state. We provide explicit conditions open to experimental testing. Cutting might have minimal adverse impacts, but will take time to be successful. N fertilization either alone or in combination with cutting is more likely to bring about desired reductions in P availability thus allowing grassland restoration, but might have undesired ecosystem consequences.  相似文献   
982.
Wild animals not normally exposed to antimicrobial agents can acquire antimicrobial agent-resistant bacteria through contact with humans and domestic animals and through the environment. In this study we assessed the frequency of antimicrobial resistance in generic Escherichia coli isolates from wild small mammals (mice, voles, and shrews) and the effect of their habitat (farm or natural area) on antimicrobial resistance. Additionally, we compared the types and frequency of antimicrobial resistance in E. coli isolates from swine on the same farms from which wild small mammals were collected. Animals residing in the vicinity of farms were five times more likely to carry E. coli isolates with tetracycline resistance determinants than animals living in natural areas; resistance to tetracycline was also the most frequently observed resistance in isolates recovered from swine (83%). Our results suggest that E. coli isolates from wild small mammals living on farms have higher rates of resistance and are more frequently multiresistant than E. coli isolates from environments, such as natural areas, that are less impacted by human and agricultural activities. No Salmonella isolates were recovered from any of the wild small mammal feces. This study suggests that close proximity to food animal agriculture increases the likelihood that E. coli isolates from wild animals are resistant to some antimicrobials, possibly due to exposure to resistant E. coli isolates from livestock, to the resistance genes of these isolates, or to antimicrobials through contact with animal feed.  相似文献   
983.
In most cyanobacteria high irradiance induces a photoprotective mechanism that downregulates photosynthesis by increasing thermal dissipation of the energy absorbed by the phycobilisome, the water-soluble antenna. The light activation of a soluble carotenoid protein, the Orange-Carotenoid-Protein (OCP), binding hydroxyechinenone, a keto carotenoid, is the key inducer of this mechanism. Light causes structural changes within the carotenoid and the protein, leading to the conversion of a dark orange form into a red active form. Here, we tested whether echinenone or zeaxanthin can replace hydroxyechinenone in a study in which the nature of the carotenoid bound to the OCP was genetically changed. In a mutant lacking hydroxyechinenone and echinenone, the OCP was found to bind zeaxanthin but the stability of the binding appeared to be lower and light was unable to photoconvert the dark form into a red active form. Moreover, in the strains containing zeaxanthin-OCP, blue-green light did not induce the photoprotective mechanism. In contrast, in mutants in which echinenone is bound to the OCP, the protein is photoactivated and photoprotection is induced. Our results strongly suggest that the presence of the carotenoid carbonyl group that distinguishes echinenone and hydroxyechinenone from zeaxanthin is essential for the OCP activity.  相似文献   
984.
One-year-old bay scallops, Argopecten irradians irradians (58 ± 2 mm, 22 ± 1 g live weight) were exposed to four replicated photoperiod treatments (24D, 8L:16D, 16L:8D, and 24L where D = dark hours, L = light hours) in order to measure the effect on gonad weight and maturation during the conditioning process. Results indicated that day-lengths of more than 8 h are necessary to promote gonad maturation in bay scallops. After 6 wk, the mean gonad weight for scallops in the 16-h and 24-h light regimes was similar at 0.6 ± 0.1 g dry weight compared to a mean of 0.2 ± 0.1 g dry weight for those in the 8-h and 0-h light regimes. Histological assessment indicated significantly more follicular tissue development in both the male and female portion of the gonad in the two longer photoperiod treatments. Overall, gamete maturity was highest for the scallops in the 16-h light regime; the incidence of mature eggs was 50% compared to 35% in the 24-h light regime, 20% in the 8-h light regime and 10% in the 0-h light regime. Assessment of feeding rates indicated no significant difference in algal cell consumption among treatments. Total dry tissue weight doubled over the 6-wk conditioning trial with no significant differences among treatments. One-year-old bay scallops appear to be non-responsive to conditions suitable for gonad maturation (i.e. appropriate temperature and food levels) unless they receive more than 8 h of light exposure. This finding has important implications for northern hatcheries which typically condition broodstock indoors during the early spring.  相似文献   
985.
986.
987.
Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin β1 subunit in striated muscle results in a near complete loss of integrin β1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin β1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR·Rictor·LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin β1 signaling events in mediating cross-talk to that of insulin action.Integrin receptors are a large family of integral membrane proteins composed of a single α and β subunit assembled into a heterodimeric complex. There are 19 α and 8 β mammalian subunit isoforms that combine to form 25 distinct α,β heterodimeric receptors (1-5). These receptors play multiple critical roles in conveying extracellular signals to intracellular responses (outside-in signaling) as well as altering extracellular matrix interactions based upon intracellular changes (inside-out signaling). Despite the large overall number of integrin receptor complexes, skeletal muscle integrin receptors are limited to seven α subunit subtypes (α1, α3, α4, α5, α6, α7, and αν subunits), all associated with the β1 integrin subunit (6, 7).Several studies have suggested an important cross-talk between extracellular matrix and insulin signaling. For example, engagement of β1 subunit containing integrin receptors was observed to increase insulin-stimulated insulin receptor substrate (IRS)2 phosphorylation, IRS-associated phosphatidylinositol 3-kinase, and activation of protein kinase B/Akt (8-11). Integrin receptor regulation of focal adhesion kinase was reported to modulate insulin stimulation of glycogen synthesis, glucose transport, and cytoskeleton organization in cultured hepatocytes and myoblasts (12, 13). Similarly, the integrin-linked kinase (ILK) was suggested to function as one of several potential upstream kinases that phosphorylate and activate Akt (14-18). In this regard small interfering RNA gene silencing of ILK in fibroblasts and conditional ILK gene knockouts in macrophages resulted in a near complete inhibition of insulin-stimulated Akt serine 473 (Ser-473) phosphorylation concomitant with an inhibition of Akt activity and phosphorylation of Akt downstream targets (19). However, a complex composed of mTOR·Rictor·LST8 (termed mTORC2) has been identified in several other studies as the Akt Ser-473 kinase (20, 21). In addition to Ser-473, Akt protein kinase activation also requires phosphorylation on threonine 308 Thr-30 by phosphoinositide-dependent protein kinase, PDK1 (22-24).In vivo, skeletal muscle is the primary tissue responsible for postprandial (insulin-stimulated) glucose disposal that results from the activation of signaling pathways leading to the translocation of the insulin-responsive glucose transporter, GLUT4, from intracellular sites to the cell surface membranes (25, 26). Dysregulation of any step of this process in skeletal muscle results in a state of insulin resistance, thereby predisposing an individual for the development of diabetes (27-33). Although studies described above have utilized a variety of tissue culture cell systems to address the potential involvement of integrin receptor signaling in insulin action, to date there has not been any investigation of integrin function on insulin action or glucose homeostasis in vivo. To address this issue, we have taken advantage of Cre-LoxP technology to inactivate the β1 integrin receptor subunit gene in striated muscle. We have observed that muscle creatine kinase-specific integrin β1 knock-out (MCKItgβ1 KO) mice display a reduction of insulin-stimulated glucose infusion rate and glucose clearance. The impairment of insulin-stimulated skeletal muscle glucose uptake and glycogen synthesis resulted from a decrease in Akt Ser-473 phosphorylation concomitant with a marked reduction in ILK expression. Together, these data demonstrate an important cross-talk between integrin receptor function and insulin action and suggests that ILK may function as an Akt Ser-473 kinase in skeletal muscle.  相似文献   
988.
989.
990.
P-glycoprotein (P-gp, ATP-binding cassette B1) is a drug pump that extracts toxic drug substrates from the plasma membrane and catalyzes their ATP-dependent efflux. To map the residues in the drug translocation pathway, we performed arginine-scanning mutagenesis on all transmembrane (TM) segments (total = 237 residues) of a P-gp processing mutant (G251V) defective in folding (15% maturation efficiency) (glycosylation state used to monitor folding). The rationale was that arginines introduced into the drug-binding sites would mimic drug rescue and enhance maturation of wild-type or processing mutants of P-gp. It was found that 38 of the 89 mutants that matured had enhanced maturation. Enhancer mutations were found in 11 of the 12 TM segments with the largest number found in TMs 6 and 12 (seven in each), TMs that are critical for P-gp-drug substrate interactions. Modeling of the TM segments showed that the enhancer arginines were found on the hydrophilic face, whereas inhibitory arginines were located on a hydrophobic face that may be in contact with the lipid bilayer. It was found that many of the enhancer arginines caused large alterations in P-gp-drug interactions in ATPase assays. For example, mutants A302R (TM5), L339R (TM6), G872R (TM10), F942R (TM11), Q946R (TM11), V982R (TM12), and S993R (TM12) reduced the apparent affinity for verapamil by ∼10-fold, whereas the F336R (TM6) and M986R (TM12) mutations caused at least a 10-fold increase in apparent affinity for rhodamine B. The results suggest that P-gp contains a large aqueous-filled drug translocation pathway with multiple drug-binding sites that can accommodate the bulky arginine side chains to promote folding of the protein.The human multidrug resistance P-glycoprotein (P-gp, ATP-binding cassette B1)2 is an ATP-dependent drug pump that mediates efflux of a broad range of hydrophobic compounds out of the cell (1). It is expressed in the epithelium of liver, kidney, and gastrointestinal tract and at the blood-brain or blood-testes barrier where it functions to protect us from cytotoxic compounds. It is clinically important because it contributes to multidrug resistance in diseases such as cancer and AIDS (1).P-gp is an ATP-binding cassette transporter of 1280 amino acids that consists of two homologous halves (2). Each half begins with a transmembrane domain (TMD) containing six TM segments followed by a nucleotide-binding domain (NBD).A key goal to understanding the mechanism of P-gp drug transport is to identify the amino acids that line the drug translocation pathway. Because P-gp extracts drug substrates from the lipid bilayer, the drug-binding pocket/drug translocation pathway are predicted to reside in the transmembrane (TM) segments. We previously showed that the TMDs alone were sufficient for drug binding (3). Expression of the TMDs as separate polypeptides showed that both TMD1 and TMD2 were required for binding drug substrate (4). The results of studies utilizing cysteine-scanning mutagenesis and labeling with thiol-reactive drug substrates suggested that all of the TM segments contribute to the drug-binding pocket/drug translocation pathway (reviewed in Ref. 5). The next step is to identify the specific amino acids that line the drug translocation pathway. It is important to identify amino acids that line the drug translocation pathway and to compare whether the biochemical evidence supports a model of P-gp structure in the closed conformation (6) (NBDs close together that was based on the bacterial Sav1866 crystal structure (7)) or the recent crystal structure of mouse P-gp in the open conformation (NBDs far apart) (8). There have been concerns that the mouse P-gp structure may be a non-native structure or in a conformation that exists very transiently (9).Our approach to map the drug translocation pathway has been to use arginine-scanning mutagenesis of the TM segments of a P-gp processing mutant (G251V) that shows partial maturation (∼15% maturation efficiency) (10). Maturation efficiency can be used to detect folding of P-gp in whole cells by monitoring the conversion of P-gp from a core-glycosylated (150 kDa) protein to a mature protein (170 kDa) that contains complex carbohydrate. Because mutant G251V shows partial maturation, we can detect whether an introduced arginine promotes, inhibits, or has a neutral effect on folding. The rationale for using arginine-scanning mutagenesis was that arginine has a large free energy barrier (17 kcal/mol) for insertion into the lipid bilayer because it is highly charged (11). Therefore, introduction of an arginine into a lipid face of the G251V mutant would likely inhibit maturation, whereas an arginine introduced into the aqueous face of the drug translocation pathway would not inhibit maturation of the mutant P-gp.In an initial study on TM1, we demonstrated the feasibility of the approach (10). All arginines introduced into the predicted lipid-facing positions inhibited maturation, whereas those introduced into positions predicted to face the drug translocation pathway did not. A particularly intriguing observation was that some arginines promoted maturation. The residues at these positions were coincidentally at positions identical to those that reacted with thiol-reactive drug substrates in cysteine-scanning mutagenesis studies and were found to be within the drug-binding pocket (10, 12). This suggested that arginine-scanning mutagenesis could be a useful approach for identifying residues in the drug translocation pathway and for determining the orientation of the TM segments in the membrane.Arginines that promote maturation appear to identify positions that are important for P-gp-drug interactions because they appear to mimic drug rescue of P-gp. It was also found that the ability of arginines (such as I306R in TM5) to promote maturation involved global enhancement of P-gp folding rather than simply compensating for a localized mutation (such as G251V) because other processing mutants could also be rescued (12). Because these arginine mutations enhance folding of P-gp in general, they will be described as enhancer rather than suppressor arginines. In this study we performed arginine-scanning mutagenesis on TMs 2–12 of P-gp processing mutant G251V to determine their orientations in the membrane and to identify residues that line the drug translocation pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号