全文获取类型
收费全文 | 5577篇 |
免费 | 507篇 |
国内免费 | 1篇 |
专业分类
6085篇 |
出版年
2023年 | 29篇 |
2022年 | 76篇 |
2021年 | 135篇 |
2020年 | 84篇 |
2019年 | 113篇 |
2018年 | 119篇 |
2017年 | 107篇 |
2016年 | 173篇 |
2015年 | 315篇 |
2014年 | 329篇 |
2013年 | 406篇 |
2012年 | 492篇 |
2011年 | 481篇 |
2010年 | 283篇 |
2009年 | 251篇 |
2008年 | 356篇 |
2007年 | 325篇 |
2006年 | 299篇 |
2005年 | 329篇 |
2004年 | 305篇 |
2003年 | 256篇 |
2002年 | 220篇 |
2001年 | 46篇 |
2000年 | 32篇 |
1999年 | 43篇 |
1998年 | 48篇 |
1997年 | 29篇 |
1996年 | 32篇 |
1995年 | 21篇 |
1994年 | 37篇 |
1993年 | 21篇 |
1992年 | 26篇 |
1991年 | 24篇 |
1990年 | 14篇 |
1989年 | 14篇 |
1988年 | 10篇 |
1987年 | 12篇 |
1986年 | 19篇 |
1985年 | 10篇 |
1984年 | 21篇 |
1983年 | 7篇 |
1982年 | 10篇 |
1980年 | 11篇 |
1979年 | 10篇 |
1978年 | 9篇 |
1977年 | 25篇 |
1976年 | 12篇 |
1974年 | 6篇 |
1972年 | 8篇 |
1971年 | 7篇 |
排序方式: 共有6085条查询结果,搜索用时 62 毫秒
171.
S��bastien Thomas Brigitte Ritter David Verbich Claire Sanson Lyne Bourbonni��re R. Anne McKinney Peter S. McPherson 《The Journal of biological chemistry》2009,284(18):12410-12419
Intersectin-short (intersectin-s) is a multimodule scaffolding protein
functioning in constitutive and regulated forms of endocytosis in non-neuronal
cells and in synaptic vesicle (SV) recycling at the neuromuscular junction of
Drosophila and Caenorhabditis elegans. In vertebrates,
alternative splicing generates a second isoform, intersectin-long
(intersectin-l), that contains additional modular domains providing a guanine
nucleotide exchange factor activity for Cdc42. In mammals, intersectin-s is
expressed in multiple tissues and cells, including glia, but excluded from
neurons, whereas intersectin-l is a neuron-specific isoform. Thus,
intersectin-I may regulate multiple forms of endocytosis in mammalian neurons,
including SV endocytosis. We now report, however, that intersectin-l is
localized to somatodendritic regions of cultured hippocampal neurons, with
some juxtanuclear accumulation, but is excluded from synaptophysin-labeled
axon terminals. Consistently, intersectin-l knockdown (KD) does not affect SV
recycling. Instead intersectin-l co-localizes with clathrin heavy chain and
adaptor protein 2 in the somatodendritic region of neurons, and its KD reduces
the rate of transferrin endocytosis. The protein also co-localizes with
F-actin at dendritic spines, and intersectin-l KD disrupts spine maturation
during development. Our data indicate that intersectin-l is indeed an
important regulator of constitutive endocytosis and neuronal development but
that it is not a prominent player in the regulated endocytosis of SVs.Clathrin-mediated endocytosis
(CME)4 is a
major mechanism by which cells take up nutrients, control the surface levels
of multiple proteins, including ion channels and transporters, and regulate
the coupling of signaling receptors to downstream signaling cascades
(1-5).
In neurons, CME takes on additional specialized roles; it is an important
process regulating synaptic vesicle (SV) availability through endocytosis and
recycling of SV membranes (6,
7), it shapes synaptic
plasticity
(8-10),
and it is crucial in maintaining synaptic membranes and membrane structure
(11).Numerous endocytic accessory proteins participate in CME, interacting with
each other and with core components of the endocytic machinery such as
clathrin heavy chain (CHC) and adaptor protein-2 (AP-2) through specific
modules and peptide motifs
(12). One such module is the
Eps15 homology domain that binds to proteins bearing NPF motifs
(13,
14). Another is the Src
homology 3 (SH3) domain, which binds to proline-rich domains in protein
partners (15). Intersectin is
a multimodule scaffolding protein that interacts with a wide range of
proteins, including several involved in CME
(16). Intersectin has two
N-terminal Eps15 homology domains that are responsible for binding to epsin,
SCAMP1, and numb
(17-19),
a central coil-coiled domain that interacts with Eps15 and SNAP-23 and -25
(17,
20,
21), and five SH3 domains in
its C-terminal region that interact with multiple proline-rich domain
proteins, including synaptojanin, dynamin, N-WASP, CdGAP, and mSOS
(16,
22-25).
The rich binding capability of intersectin has linked it to various functions
from CME (17,
26,
27) and signaling
(22,
28,
29) to mitogenesis
(30,
31) and regulation of the
actin cytoskeleton (23).Intersectin functions in SV recycling at the neuromuscular junction of
Drosophila and C. elegans where it acts as a scaffold,
regulating the synaptic levels of endocytic accessory proteins
(21,
32-34).
In vertebrates, the intersectin gene is subject to alternative splicing, and a
longer isoform (intersectin-l) is generated that is expressed exclusively in
neurons (26,
28,
35,
36). This isoform has all the
binding modules of its short (intersectin-s) counterpart but also has
additional domains: a DH and a PH domain that provide guanine nucleotide
exchange factor (GEF) activity specific for Cdc42
(23,
37) and a C2 domain at the C
terminus. Through its GEF activity and binding to actin regulatory proteins,
including N-WASP, intersectin-l has been implicated in actin regulation and
the development of dendritic spines
(19,
23,
24). In addition, because the
rest of the binding modules are shared between intersectin-s and -l, it is
generally thought that the two intersectin isoforms have the same endocytic
functions. In particular, given the well defined role for the invertebrate
orthologs of intersectin-s in SV endocytosis, it is thought that intersectin-l
performs this role in mammalian neurons, which lack intersectin-s. Defining
the complement of intersectin functional activities in mammalian neurons is
particularly relevant given that the protein is involved in the
pathophysiology of Down syndrome (DS). Specifically, the intersectin gene is
localized on chromosome 21q22.2 and is overexpressed in DS brains
(38). Interestingly,
alterations in endosomal pathways are a hallmark of DS neurons and neurons
from the partial trisomy 16 mouse, Ts65Dn, a model for DS
(39,
40). Thus, an endocytic
trafficking defect may contribute to the DS disease process.Here, the functional roles of intersectin-l were studied in cultured
hippocampal neurons. We find that intersectin-l is localized to the
somatodendritic regions of neurons, where it co-localizes with CHC and AP-2
and regulates the uptake of transferrin. Intersectin-l also co-localizes with
actin at dendritic spines and disrupting intersectin-l function alters
dendritic spine development. In contrast, intersectin-l is absent from
presynaptic terminals and has little or no role in SV recycling. 相似文献
172.
Claire Guillemin Nadine Proven?al Matthew Suderman Sylvana M. C?té Frank Vitaro Michael Hallett Richard E. Tremblay Moshe Szyf 《PloS one》2014,9(1)
Background
High frequency of physical aggression is the central feature of severe conduct disorder and is associated with a wide range of social, mental and physical health problems. We have previously tested the hypothesis that differential DNA methylation signatures in peripheral T cells are associated with a chronic aggression trajectory in males. Despite the fact that sex differences appear to play a pivotal role in determining the development, magnitude and frequency of aggression, most of previous studies focused on males, so little is known about female chronic physical aggression. We therefore tested here whether or not there is a signature of physical aggression in female DNA methylation and, if there is, how it relates to the signature observed in males.Methodology/Principal Findings
Methylation profiles were created using the method of methylated DNA immunoprecipitation (MeDIP) followed by microarray hybridization and statistical and bioinformatic analyses on T cell DNA obtained from adult women who were found to be on a chronic physical aggression trajectory (CPA) between 6 and 12 years of age compared to women who followed a normal physical aggression trajectory. We confirmed the existence of a well-defined, genome-wide signature of DNA methylation associated with chronic physical aggression in the peripheral T cells of adult females that includes many of the genes similarly associated with physical aggression in the same cell types of adult males.Conclusions
This study in a small number of women presents preliminary evidence for a genome-wide variation in promoter DNA methylation that associates with CPA in women that warrant larger studies for further verification. A significant proportion of these associations were previously observed in men with CPA supporting the hypothesis that the epigenetic signature of early life aggression in females is composed of a component specific to females and another common to both males and females. 相似文献173.
Claire L. Gibson Kirtiman Srivastava Nikola Sprigg Philip M. W. Bath Ulvi Bayraktutan 《Journal of neurochemistry》2014,129(5):816-826
Ischaemic strokes evoke blood–brain barrier (BBB) disruption and oedema formation through a series of mechanisms involving Rho‐kinase activation. Using an animal model of human focal cerebral ischaemia, this study assessed and confirmed the therapeutic potential of Rho‐kinase inhibition during the acute phase of stroke by displaying significantly improved functional outcome and reduced cerebral lesion and oedema volumes in fasudil‐ versus vehicle‐treated animals. Analyses of ipsilateral and contralateral brain samples obtained from mice treated with vehicle or fasudil at the onset of reperfusion plus 4 h post‐ischaemia or 4 h post‐ischaemia alone revealed these benefits to be independent of changes in the activity and expressions of oxidative stress‐ and tight junction‐related parameters. However, closer scrutiny of the same parameters in brain microvascular endothelial cells subjected to oxygen–glucose deprivation ± reperfusion revealed marked increases in prooxidant NADPH oxidase enzyme activity, superoxide anion release and in expressions of antioxidant enzyme catalase and tight junction protein claudin‐5. Cotreatment of cells with Y‐27632 prevented all of these changes and protected in vitro barrier integrity and function. These findings suggest that inhibition of Rho‐kinase after acute ischaemic attacks improves cerebral integrity and function through regulation of endothelial cell oxidative stress and reorganization of intercellular junctions.
174.
Birck C Damian L Marty-Detraves C Lougarre A Schulze-Briese C Koehl P Fournier D Paquereau L Samama JP 《Journal of molecular biology》2004,344(5):1409-1420
A newly defined family of fungal lectins displays no significant sequence similarity to any protein in the databases. These proteins, made of about 140 amino acid residues, have sequence identities ranging from 38% to 65% and share binding specificity to N-acetyl galactosamine. One member of this family, the lectin XCL from Xerocomus chrysenteron, induces drastic changes in the actin cytoskeleton after sugar binding at the cell surface and internalization, and has potent insecticidal activity. The crystal structure of XCL to 1.4 A resolution reveals the architecture of this new lectin family. The fold of the protein is not related to any of the several lectin folds documented so far. Unexpectedly, the structure similarity is significant with actinoporins, a family of pore-forming toxins. The specific structural features and sequence signatures in each protein family suggest a potential sugar binding site in XCL and a possible evolutionary relationship between these proteins. Finally, the tetrameric assembly of XCL reveals a complex network of protomer-protomer interfaces and generates a large, hydrated cavity of 1000 A3, which may become accessible to larger solutes after a small conformational change of the protein. 相似文献
175.
The anaphase promoting complex/cyclosome (APC/C) is crucial to the control of cell division (for a review, see ref. 1). It is a multi-subunit ubiquitin ligase that, at defined points during mitosis, targets specific proteins for proteasomal degradation. The APC/C is itself regulated by the spindle or kinetochore checkpoint, which has an important role in maintaining genomic stability by preventing sister chromatid separation until all chromosomes are correctly aligned on the mitotic spindle. The spindle checkpoint regulates the APC/C by inactivating Cdc20, an important co-activator of the APC/C. There is also evidence to indicate that the spindle checkpoint components and Cdc20 are spatially regulated by the mitotic apparatus, in particular they are recruited to improperly attached kinetochores. Here, we show that the APC/C itself co-localizes with components of the spindle checkpoint to improperly attached kinetochores. Indeed, we provide evidence that the spindle checkpoint machinery is required to recruit the APC/C to kinetochores. Our data indicate that the APC/C could be regulated directly by the spindle checkpoint. 相似文献
176.
Rad52 and Ku bind to different DNA structures produced early in double-strand break repair 总被引:1,自引:1,他引:1
DNA double-strand breaks are repaired by one of two main pathways, non-homologous end joining or homologous recombination. A competition for binding to DNA ends by Ku and Rad52, proteins required for non-homologous end joining and homologous recombination, respectively, has been proposed to determine the choice of repair pathway. In order to test this idea directly, we compared Ku and human Rad52 binding to different DNA substrates. How ever, we found no evidence that these proteins would compete for binding to the same broken DNA ends. Ku bound preferentially to DNA with free ends. Under the same conditions, Rad52 did not bind preferentially to DNA ends. Using a series of defined substrates we showed that it is single-stranded DNA and not DNA ends that were preferentially bound by Rad52. In addition, Rad52 aggregated DNA, bringing different single-stranded DNAs in close proximity. This activity was independent of the presence of DNA ends and of the ability of the single-stranded sequences to form extensive base pairs. Based on these DNA binding characteristics it is unlikely that Rad52 and Ku compete as ‘gatekeepers’ of different DNA double-strand break repair pathways. Rather, they interact with different DNA substrates produced early in DNA double-strand break repair. 相似文献
177.
Phylogenetic identification and population differentiation of bottlenose dolphins (Tursiops spp.) in Melanesia,as revealed by mitochondrial DNA 下载免费PDF全文
Marc Oremus Claire Garrigue Gabriela Tezanos‐Pinto C. Scott Baker 《Marine Mammal Science》2015,31(3):1035-1056
The taxonomic status of many dolphin populations remains uncertain in poorly studied regions of the world's ocean. Here we attempt to clarify the phylogenetic identity of two distinct forms of bottlenose dolphins (Tursiops spp.) described in the Melanesian region of the Pacific Ocean. Mitochondrial DNA control region sequences from samples collected in New Caledonia (n = 88) and the Solomon Islands (n = 19) were compared to previously published sequences of Tursiops spp., representing four phylogenetic units currently recognized within the genus. Phylogenetic reconstructions confirm that the smaller coastal form in Melanesia belongs to the same phylogenetic unit as T. aduncus populations in the Pacific, but differs from T. aduncus in Africa, and that the larger more oceanic form belongs to the species T. truncatus. Analyses of population diversity reveal high levels of regional population structuring among the two forms, with contrasting levels of diversity. From a conservation perspective, genetic isolation of T. aduncus in the Solomon Islands raises further concern about recent impacts of the commercial, live‐capture export industry. Furthermore, the low level of mtDNA diversity in T. aduncus of New Caledonia suggests a recent population bottleneck or founder effect and isolation. This raises concerns for the conservation status of these local populations. 相似文献
178.
Christine Demanche Manjula Deville Johan Michaux Véronique Barriel Claire Pin?on Cécile Marie Aliouat-Denis Muriel Pottier Christophe No?l Eric Viscogliosi El Moukhtar Aliouat Eduardo Dei-Cas Serge Morand Jacques Guillot 《PloS one》2015,10(4)
Pneumocystis fungi represent a highly diversified biological group with numerous species, which display a strong host-specificity suggesting a long co-speciation process. In the present study, the presence and genetic diversity of Pneumocystis organisms was investigated in 203 lung samples from woodmice (Apodemus sylvaticus) collected on western continental Europe and Mediterranean islands. The presence of Pneumocystis DNA was assessed by nested PCR at both large and small mitochondrial subunit (mtLSU and mtSSU) rRNA loci. Direct sequencing of nested PCR products demonstrated a very high variability among woodmouse-derived Pneumocystis organisms with a total number of 30 distinct combined mtLSU and mtSSU sequence types. However, the genetic divergence among these sequence types was very low (up to 3.87%) and the presence of several Pneumocystis species within Apodemus sylvaticus was considered unlikely. The analysis of the genetic structure of woodmouse-derived Pneumocystis revealed two distinct groups. The first one comprised Pneumocystis from woodmice collected in continental Spain, France and Balearic islands. The second one included Pneumocystis from woodmice collected in continental Italy, Corsica and Sicily. These two genetic groups were in accordance with the two lineages currently described within the host species Apodemus sylvaticus. Pneumocystis organisms are emerging as powerful tools for phylogeographic studies in mammals. 相似文献
179.
Nicholas M. A. Smith Claire Wade Michael H. Allsopp Brock A. Harpur Amro Zayed Stephen A. Rose Jan Engelstdter Nadine C. Chapman Boris Yagound Benjamin P. Oldroyd 《Journal of evolutionary biology》2019,32(2):144-152
Inbreeding (the mating between closely related individuals) often has detrimental effects that are associated with loss of heterozygosity at overdominant loci, and the expression of deleterious recessive alleles. However, determining which loci are detrimental when homozygous, and the extent of their phenotypic effects, remains poorly understood. Here, we utilize a unique inbred population of clonal (thelytokous) honey bees, Apis mellifera capensis, to determine which loci reduce individual fitness when homozygous. This asexual population arose from a single worker ancestor approximately 20 years ago and has persisted for at least 100 generations. Thelytokous parthenogenesis results in a 1/3 of loss of heterozygosity with each generation. Yet, this population retains heterozygosity throughout its genome due to selection against homozygotes. Deep sequencing of one bee from each of the three known sub‐lineages of the population revealed that 3,766 of 10,884 genes (34%) have retained heterozygosity across all sub‐lineages, suggesting that these genes have heterozygote advantage. The maintenance of heterozygosity in the same genes and genomic regions in all three sub‐lineages suggests that nearly every chromosome carries genes that show sufficient heterozygote advantage to be selectively detrimental when homozygous. 相似文献
180.