首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5529篇
  免费   511篇
  国内免费   1篇
  2023年   25篇
  2022年   64篇
  2021年   134篇
  2020年   83篇
  2019年   114篇
  2018年   120篇
  2017年   104篇
  2016年   173篇
  2015年   317篇
  2014年   325篇
  2013年   406篇
  2012年   489篇
  2011年   481篇
  2010年   280篇
  2009年   248篇
  2008年   353篇
  2007年   326篇
  2006年   297篇
  2005年   328篇
  2004年   301篇
  2003年   256篇
  2002年   216篇
  2001年   46篇
  2000年   32篇
  1999年   43篇
  1998年   49篇
  1997年   29篇
  1996年   32篇
  1995年   21篇
  1994年   37篇
  1993年   21篇
  1992年   26篇
  1991年   24篇
  1990年   14篇
  1989年   14篇
  1988年   9篇
  1987年   12篇
  1986年   18篇
  1985年   10篇
  1984年   21篇
  1983年   7篇
  1982年   10篇
  1980年   11篇
  1979年   10篇
  1978年   9篇
  1977年   25篇
  1976年   12篇
  1974年   7篇
  1972年   8篇
  1971年   7篇
排序方式: 共有6041条查询结果,搜索用时 15 毫秒
151.
Nur77 is a stress sensor in pancreatic β-cells, which negatively regulates glucose-stimulated insulin secretion. We recently showed that a lipotoxic shock caused by exposure of β-cells to the saturated fatty acid palmitate strongly increases Nur77 expression. Here, using dual luciferase reporter assays and Nur77 promoter deletion constructs, we identified a regulatory cassette between −1534 and −1512 bp upstream from the translational start site mediating Nur77 promoter activation in response to palmitate exposure. Chromatin immunoprecipitation, transient transfection and siRNA-mediated knockdown assays revealed that palmitate induced Nur77 promoter activation involves Sp1 recruitment and ZBP89 release from the gene promoter.  相似文献   
152.
Tubular aggregates are regular arrays of membrane tubules accumulating in muscle with age. They are found as secondary features in several muscle disorders, including alcohol- and drug-induced myopathies, exercise-induced cramps, and inherited myasthenia, but also exist as a pure genetic form characterized by slowly progressive muscle weakness. We identified dominant STIM1 mutations as a genetic cause of tubular-aggregate myopathy (TAM). Stromal interaction molecule 1 (STIM1) is the main Ca2+ sensor in the endoplasmic reticulum, and all mutations were found in the highly conserved intraluminal Ca2+-binding EF hands. Ca2+ stores are refilled through a process called store-operated Ca2+ entry (SOCE). Upon Ca2+-store depletion, wild-type STIM1 oligomerizes and thereby triggers extracellular Ca2+ entry. In contrast, the missense mutations found in our four TAM-affected families induced constitutive STIM1 clustering, indicating that Ca2+ sensing was impaired. By monitoring the calcium response of TAM myoblasts to SOCE, we found a significantly higher basal Ca2+ level in TAM cells and a dysregulation of intracellular Ca2+ homeostasis. Because recessive STIM1 loss-of-function mutations were associated with immunodeficiency, we conclude that the tissue-specific impact of STIM1 loss or constitutive activation is different and that a tight regulation of STIM1-dependent SOCE is fundamental for normal skeletal-muscle structure and function.  相似文献   
153.
154.
Mammalian male fertility relies on complex inter- and intracellular signaling during spermatogenesis. Here we describe three alleles of the widely expressed A-kinase anchoring protein 9 (Akap9) gene, all of which cause gametogenic failure and infertility in the absence of marked somatic phenotypes. Akap9 disruption does not affect spindle nucleation or progression of prophase I of meiosis but does inhibit maturation of Sertoli cells, which continue to express the immaturity markers anti-Mullerian hormone and thyroid hormone receptor alpha in adults and fail to express the maturation marker p27Kip1. Furthermore, gap and tight junctions essential for blood–testis barrier (BTB) organization are disrupted. Connexin43 (Cx43) and zona occludens-1 are improperly localized in Akap9 mutant testes, and Cx43 fails to compartmentalize germ cells near the BTB. These results identify and support a novel reproductive tissue-specific role for Akap9 in the coordinated regulation of Sertoli cells in the testis.  相似文献   
155.
The most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete pathogen downy mildew (Plasmopara viticola). Currently, grapegrowers rely heavily on the use of agrochemicals to minimize the potentially devastating impact of these pathogens on grape yield and quality. The wild North American grapevine species Muscadinia rotundifolia was recognized as early as 1889 to be resistant to both powdery and downy mildew. We have now mapped resistance to these two mildew pathogens in M. rotundifolia to a single locus on chromosome 12 that contains a family of seven TIR‐NB‐LRR genes. We further demonstrate that two highly homologous (86% amino acid identity) members of this gene family confer strong resistance to these unrelated pathogens following genetic transformation into susceptible Vitis vinifera winegrape cultivars. These two genes, designated r esistance to P lasmopara v iticola (MrRPV1) are the first resistance genes to be cloned from a grapevine species. Both MrRUN1 and MrRPV1 were found to confer resistance to multiple powdery and downy mildew isolates from France, North America and Australia; however, a single powdery mildew isolate collected from the south‐eastern region of North America, to which M. rotundifolia is native, was capable of breaking MrRUN1‐mediated resistance. Comparisons of gene organization and coding sequences between M. rotundifolia and the cultivated grapevine V. vinifera at the MrRUN1/MrRPV1 locus revealed a high level of synteny, suggesting that the TIR‐NB‐LRR genes at this locus share a common ancestor.  相似文献   
156.
Root chicory (Cichorium intybus var. sativum) is a biennial crop, but is harvested to obtain root inulin at the end of the first growing season before flowering. However, cold temperatures may vernalize seeds or plantlets, leading to incidental early flowering, and hence understanding the molecular basis of vernalization is important. A MADS box sequence was isolated by RT‐PCR and named FLC‐LIKE1 (CiFL1) because of its phylogenetic positioning within the same clade as the floral repressor Arabidopsis FLOWERING LOCUS C (AtFLC). Moreover, over‐expression of CiFL1 in Arabidopsis caused late flowering and prevented up‐regulation of the AtFLC target FLOWERING LOCUS T by photoperiod, suggesting functional conservation between root chicory and Arabidopsis. Like AtFLC in Arabidopsis, CiFL1 was repressed during vernalization of seeds or plantlets of chicory, but repression of CiFL1 was unstable when the post‐vernalization temperature was favorable to flowering and when it de‐vernalized the plants. This instability of CiFL1 repression may be linked to the bienniality of root chicory compared with the annual lifecycle of Arabidopsis. However, re‐activation of AtFLC was also observed in Arabidopsis when a high temperature treatment was used straight after seed vernalization, eliminating the promotive effect of cold on flowering. Cold‐induced down‐regulation of a MADS box floral repressor and its re‐activation by high temperature thus appear to be conserved features of the vernalization and de‐vernalization responses in distant species.  相似文献   
157.
A series of imidazopyridazines which are potent inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) was identified from a high-throughput screen against the isolated enzyme. Subsequent exploration of the SAR and optimisation has yielded leading members which show promising in vitro anti-parasite activity along with good in vitro ADME and selectivity against human kinases. Initial in vivo testing has revealed good oral bioavailability in a mouse PK study and modest in vivo efficacy in a Plasmodium berghei mouse model of malaria.  相似文献   
158.
159.
Clostridium perfringens epsilon toxin (Etx) is a pore‐forming toxin responsible for a severe and rapidly fatal enterotoxemia of ruminants. The toxin is classified as a category B bioterrorism agent by the U.S. Government Centres for Disease Control and Prevention (CDC), making work with recombinant toxin difficult. To reduce the hazard posed by work with recombinant Etx, we have used a variant of Etx that contains a H149A mutation (Etx‐H149A), previously reported to have reduced, but not abolished, toxicity. The three‐dimensional structure of H149A prototoxin shows that the H149A mutation in domain III does not affect organisation of the putative receptor binding loops in domain I of the toxin. Surface exposed tyrosine residues in domain I of Etx‐H149A (Y16, Y20, Y29, Y30, Y36 and Y196) were mutated to alanine and mutants Y30A and Y196A showed significantly reduced binding to MDCK.2 cells relative to Etx‐H149A that correlated with their reduced cytotoxic activity. Thus, our study confirms the role of surface exposed tyrosine residues in domain I of Etx in binding to MDCK cells and the suitability of Etx‐H149A for further receptor binding studies. In contrast, binding of all of the tyrosine mutants to ACHN cells was similar to that of Etx‐H149A, suggesting that Etx can recognise different cell surface receptors. In support of this, the crystal structure of Etx‐H149A identified a glycan (β‐octyl‐glucoside) binding site in domain III of Etx‐H149A, which may be a second receptor binding site. These findings have important implications for developing strategies designed to neutralise toxin activity.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号