首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   696篇
  免费   47篇
  2021年   12篇
  2019年   4篇
  2018年   6篇
  2016年   5篇
  2015年   25篇
  2014年   33篇
  2013年   36篇
  2012年   47篇
  2011年   46篇
  2010年   37篇
  2009年   25篇
  2008年   42篇
  2007年   38篇
  2006年   32篇
  2005年   30篇
  2004年   45篇
  2003年   34篇
  2002年   30篇
  2001年   13篇
  2000年   11篇
  1999年   8篇
  1998年   9篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   10篇
  1993年   9篇
  1992年   5篇
  1991年   7篇
  1990年   8篇
  1989年   8篇
  1988年   5篇
  1985年   5篇
  1983年   7篇
  1982年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1975年   4篇
  1974年   7篇
  1973年   4篇
  1971年   3篇
  1970年   5篇
  1968年   3篇
  1966年   3篇
  1965年   5篇
  1963年   4篇
  1962年   3篇
  1961年   4篇
排序方式: 共有743条查询结果,搜索用时 15 毫秒
61.
62.
Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1−/− mice. Four-month-old male Srd5a1 −/− mice had reduced trabecular bone mineral density (−36%, p<0.05) and cortical bone mineral content (−15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1 −/− mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1 −/− mice. Male Srd5a1 −/− mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1 −/− mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1 −/− mice, is an indirect effect mediated by elevated circulating androgen levels.  相似文献   
63.
64.

Background

Transgenic mice with low levels of global insulin-like growth factor-I (IGF-I) throughout their life span, including pre- and postnatal development, have increased longevity. This study investigated whether specific deficiency of liver-derived, endocrine IGF-I is of importance for life span.

Methods and Findings

Serum IGF-I was reduced by approximately 80% in mice with adult, liver-specific IGF-I inactivation (LI-IGF-I-/- mice), and body weight decreased due to reduced body fat. The mean life span of LI-IGF-I-/- mice (n = 84) increased 10% vs. control mice (n = 137) (Cox''s test, p<0.01), mainly due to increased life span (16%) of female mice [LI-IGF-I-/- mice (n = 31): 26.7±1.1 vs. control (n = 67): 23.0±0.7 months, p<0.001]. Male LI-IGF-I-/- mice showed only a tendency for increased longevity (p = 0.10). Energy expenditure, measured as oxygen consumption during and after submaximal exercise, was increased in the LI-IGF-I-/- mice. Moreover, microarray and RT-PCR analyses showed consistent regulation of three genes (heat shock protein 1A and 1B and connective tissue growth factor) in several body organs in the LI-IGF-I-/- mice.

Conclusions

Adult inactivation of liver-derived, endocrine IGF-I resulted in moderately increased mean life span. Body weight and body fat decreased in LI-IGF-I-/- mice, possibly due to increased energy expenditure during exercise. Genes earlier reported to modulate stress response and collagen aging showed consistent regulation, providing mechanisms that could underlie the increased mean life span in the LI-IGF-I-/- mice.  相似文献   
65.
OBJECTIVE: To investigate the effect of dexamethasone eye drops on bone metabolism in newborn rabbits. METHODS: Thirty-four 3-week-old rabbits had unilateral clear lens extraction and were randomized into three groups. Postoperatively, group 1 received high-dose and group 2 low-dose dexamethasone eye drops (average doses 0.27 and 0.10 mg/kg body weight/day, respectively). These rabbits also received a postoperative subconjunctival injection of betamethasone. Group 3 (control) received vehicle eye drops only. After 8 weeks of treatment, all animals were killed and the left femurs were isolated and subjected to peripheral quantitative computerized tomography (pQCT) and dual X-ray absorptiometry (DXA) analyses. RESULTS: DXA showed that rabbits treated with either a high or low dose of dexamethasone eye drops had significantly reduced areal bone mineral density (BMD), area and total bone mineral content (BMC) of the femur. Measurements with pQCT demonstrated a dose-dependent reduction in cortical BMC, cortical volumetric BMD and cortical area. These effects were associated with an inhibition of radial femur growth, cortical thickness and periosteal and endosteal circumferences. CONCLUSION: Dexamethasone eye drops have systemic effects affecting several bone parameters in young rabbits. Any long-term systemic effects of ocular glucocorticoids need to be further studied.  相似文献   
66.
Growth hormone (GH) replacement in hypopituitary patients improves well-being and initiative. Experimental studies indicate that these psychic effects may be reflected in enhanced locomotor activity in mice. It is unknown whether these phenomena are mediated directly by GH or by circulating IGF-I. IGF-I production in the liver was inactivated at 6-10 wk of age (LI-IGF-I-/- mice), resulting in an 80-85% reduction of circulating IGF-I, and, secondary to this, increased GH secretion. Using activity boxes on three different occasions during 1 wk, 6-mo-old LI-IGF-I-/- mice had similar activity levels, and 14-mo-old mice had a moderate but significant decrease in activity level, compared with control mice. At 20 mo of age, the LI-IGF-I-/- mice displayed a more prominent decrease in activity level with decreased horizontal activity throughout the test period, and at day 1, there were several signs of an altered habituation process with different time patterns of locomotor activity and horizontal activity compared with the control mice. At days 3 and 5, rearing activity was lower in the 20-mo-old LI-IGF-I-/- mice. Anxiety level was unaffected in all age groups, as measured using the Montgomery's elevated plus-maze. In conclusion, old LI-IGF-I-/- mice displayed a decrease in both horizontal and rearing (exploratory) activity level and an altered habituation process. These results indicate that liver-derived IGF-I mediates at least part of the effects of GH on exploratory activity in mice.  相似文献   
67.
Generalized osteoporosis in postmenopausal rheumatoid arthritis (RA) is caused both by estrogen deficiency and by the inflammatory disease. The relative importance of each of these factors is unknown. The aim of this study was to establish a murine model of osteoporosis in postmenopausal RA, and to evaluate the relative importance and mechanisms of menopause and arthritis-related osteoporosis. To mimic postmenopausal RA, DBA/1 mice were ovariectomized, followed by the induction of type II collagen-induced arthritis. After the mice had been killed, paws were collected for histology, one femur for bone mineral density (BMD) and sera for analyses of markers of bone resorption (RatLaps; type I collagen cross-links, bone formation (osteocalcin) and cartilage destruction (cartilage oligomeric matrix protein), and for the evaluation of antigen-specific and innate immune responsiveness. Ovariectomized mice displayed more severe arthritis than sham-operated controls. At termination of the experiment, arthritic control mice and non-arthritic ovariectomized mice displayed trabecular bone losses of 26% and 22%, respectively. Ovariectomized mice with arthritis had as much as 58% decrease in trabecular BMD. Interestingly, cortical BMD was decreased by arthritis but was not affected by hormonal status. In addition, markers of bone resorption and cartilage destruction were increased in arthritic mice, whereas markers of bone formation were increased in ovariectomized mice. This study demonstrates that the loss of endogenous estrogen and inflammation contribute additively and equally to osteoporosis in experimental postmenopausal polyarthritis. Markers of bone remodeling and bone marrow lymphocyte phenotypes indicate different mechanisms for the development of osteoporosis caused by ovariectomy and arthritis in this model.  相似文献   
68.
Defective glucose-stimulated insulin secretion is the main cause of hyperglycemia in type 2 diabetes mellitus. Mutations in HNF-1 cause a monogenic form of type 2 diabetes, maturity-onset diabetes of the young (MODY), characterized by impaired insulin secretion. Here we report that collectrin, a recently cloned kidney-specific gene of unknown function, is a target of HNF-1 in pancreatic β cells. Expression of collectrin was decreased in the islets of HNF-1 (−/−) mice, but was increased in obese hyperglycemic mice. Overexpression of collectrin in rat insulinoma INS-1 cells or in the β cells of transgenic mice enhanced glucose-stimulated insulin exocytosis, without affecting Ca2+ influx. Conversely, suppression of collectrin attenuated insulin secretion. Collectrin bound to SNARE complexes by interacting with snapin, a SNAP-25 binding protein, and facilitated SNARE complex formation. Therefore, collectrin is a regulator of SNARE complex function, which thereby controls insulin exocytosis.  相似文献   
69.
While cardiac hypertrophy elicited by pathological stimuli eventually leads to cardiac dysfunction, exercise-induced hypertrophy does not. This suggests that a beneficial hypertrophic phenotype exists. In search of an underlying molecular substrate we used microarray technology to identify cardiac gene expression in response to exercise. Rats exercised for seven weeks on a treadmill were characterized by invasive blood pressure measurements and echocardiography. RNA was isolated from the left ventricle and analysed on DNA microarrays containing 8740 genes. Selected genes were analysed by quantitative PCR. The exercise program resulted in cardiac hypertrophy without impaired cardiac function. Principal component analysis identified an exercise-induced change in gene expression that was distinct from the program observed in maladaptive hypertrophy. Statistical analysis identified 267 upregulated genes and 62 downregulated genes in response to exercise. Expression changes in genes encoding extracellular matrix proteins, cytoskeletal elements, signalling factors and ribosomal proteins mimicked changes previously described in maladaptive hypertrophy. Our most striking observation was that expression changes of genes involved in beta-oxidation of fatty acids and glucose metabolism differentiate adaptive from maladaptive hypertrophy. Direct comparison to maladaptive hypertrophy was enabled by quantitative PCR of key metabolic enzymes including uncoupling protein 2 (UCP2) and fatty acid translocase (CD36). DNA microarray analysis of gene expression changes in exercise-induced cardiac hypertrophy suggests that a set of genes involved in fatty acid and glucose metabolism could be fundamental to the beneficial phenotype of exercise-induced hypertrophy, as these changes are absent or reversed in maladaptive hypertrophy.  相似文献   
70.
The performance of encapsulated Saccharomyces cerevisiae CBS 8066 in anaerobic cultivation of glucose, in the presence and absence of furfural as well as in dilute-acid hydrolyzates, was investigated. The cultivation of encapsulated cells in 10 sequential batches in synthetic media resulted in linear increase of biomass up to 106 g/L of capsule volume, while the ethanol productivity remained constant at 5.15 (+/-0.17) g/L x h (for batches 6-10). The cells had average ethanol and glycerol yields of 0.464 and 0.056 g/g in these 10 batches. Addition of 5 g/L furfural decreased the ethanol productivity to a value of 1.31 (+/-0.10) g/L x h with the encapsulated cells, but it was stable in this range for five consecutive batches. On the other hand, the furfural decreased the ethanol yield to 0.41-0.42 g/g and increased the yield of acetic acid drastically up to 0.068 g/g. No significant lag phase was observed in any of these experiments. The encapsulated cells were also used to cultivate two different types of dilute-acid hydrolyzates. While the free cells were not able to ferment the hydrolyzates within at least 24 h, the encapsulated yeast successfully converted glucose and mannose in both of the hydrolyzates in less than 10 h with no significant lag phase. However, since the hydrolyzates were too toxic, the encapsulated cells lost their activity gradually in sequential batches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号