全文获取类型
收费全文 | 67篇 |
免费 | 4篇 |
专业分类
71篇 |
出版年
2022年 | 1篇 |
2021年 | 1篇 |
2020年 | 4篇 |
2019年 | 2篇 |
2018年 | 3篇 |
2017年 | 3篇 |
2016年 | 1篇 |
2013年 | 5篇 |
2012年 | 4篇 |
2011年 | 2篇 |
2010年 | 2篇 |
2009年 | 2篇 |
2008年 | 5篇 |
2007年 | 6篇 |
2006年 | 2篇 |
2005年 | 3篇 |
2004年 | 2篇 |
2003年 | 1篇 |
2002年 | 4篇 |
2001年 | 3篇 |
1998年 | 3篇 |
1989年 | 1篇 |
1985年 | 3篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1980年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1974年 | 1篇 |
1962年 | 1篇 |
排序方式: 共有71条查询结果,搜索用时 11 毫秒
21.
22.
Hanneke van Leur Ciska E. Raaijmakers & Nicole M. van Dam 《Entomologia Experimentalis et Applicata》2008,128(2):312-322
The cabbage root fly, Delia radicum L. (Diptera: Anthomyiidae), has a life cycle with spatially separated components: adults live and oviposit above ground, whereas larvae feed and pupate below ground. Oviposition choice is affected by shoot glucosinolates. However, little is known about below‐ground plant defence against D. radicum. Here, we investigate the effect of glucosinolates on oviposition preference and performance of D. radicum, using two naturally occurring heritable chemotypes of Barbarea vulgaris R. Br. (Brassicaceae) with different glucosinolate profiles: BAR‐type plants (the most common and genetically dominant glucosinolate profile, dominated by glucobarbarin) and NAS‐type plants (the recessive phenotype, dominated by gluconasturtiin). Performance was studied by applying 10 neonate D. radicum larvae per plant and measuring pupal biomass after 18 days. There was no difference in retrieval, but pupae had a higher biomass after development on BAR‐type plants. On average, BAR‐type plants received 1.8 times more eggs than NAS types, but this difference was not statistically significant. In a separate experiment, we compared the physiological response of both chemotypes to D. radicum feeding. Infestation reduced root and shoot biomass, root sugar and amino acid levels, and shoot sugar levels. Except for shoot sugar levels, these responses did not differ between the two chemotypes. Shoot or root glucosinolate profiles did not change on infestation. As glucosinolate profiles were the only consistent difference between the chemotypes, it is likely that this difference caused the reduced biomass of D. radicum pupae on NAS‐type plants. In an experimental garden, plants were heavily infested by root flies, but we found no differences in the percentage of fallen‐over flower stalks between the chemotypes. Overall, we found more pupae in the soil near BAR‐type plants, but this was not statistically significant. The results of the performance experiment suggest that BAR‐type plants may be more suitable hosts than NAS‐type plants. 相似文献
23.
The effect of direct chemical defences in plants on the performance of insect herbivores and their natural enemies has received
increasing attention over the past 10 years. However, much less is known about the scale at which this variation is generated
and maintained, both within and across populations of the same plant species. This study compares growth and development of
the large cabbage butterfly, Pieris brassicae, and its gregarious pupal parasitoid, Pteromalus puparum, on three wild populations [Kimmeridge (KIM), Old Harry (OH) and Winspit (WIN)] and two cultivars [Stonehead (ST), and Cyrus
(CYR)] of cabbage, Brassica oleracea. The wild populations originate from the coast of Dorset, UK, but grow in close proximity with one another. Insect performance
and chemical profiles were made from every plant used in the experiment. Foliar glucosinolates (GS) concentrations were highest
in the wild plants in rank order WIN > OH > KIM, with lower levels found in the cultivars. Caterpillar-damaged leaves in the
wild cabbages also had higher GS levels than undamaged leaves. Pupal mass in P. brassicae varied significantly among populations of B. oleracea. Moreover, development time in the host and parasitoid were correlated, even though these stages are temporally separated.
Parasitoid adult dry mass closely approximated the development of its host. Multivariate statistics revealed a correlation
between pupal mass and development time of P. brassicae and foliar GS chemistry, of which levels of neoglucobrassicin appeared to be the most important. Our results show that there
is considerable variation in quantitative aspects of defensive chemistry in wild cabbage plants that is maintained at very
small spatial scales in nature. Moreover, the performance of the herbivore and its parasitoid were both affected by differences
in plant quality. 相似文献
24.
Escusa S Laporte D Massoni A Boucherie H Dautant A Daignan-Fornier B 《The Journal of biological chemistry》2007,282(28):20097-20103
When yeast cells enter into quiescence in response to nutrient limitation, the adenine deaminase Aah1p is specifically degraded via a process requiring the F-box protein Saf1p and components of the Skp1-Cullin-F-box complex. In this paper, we show that Saf1p interacts with both Aah1p and Skp1p. Interaction with Skp1p, but not with Aah1p, requires the F-box domain of Saf1p. Based on deletion and point mutations, we further demonstrate that the F-box domain of Saf1p is critical for degradation of Aah1p. We also establish that overexpression of Saf1p in proliferating cells is sufficient to trigger the degradation of Aah1p. Using this property and a two-dimensional protein gel approach, we found that Saf1p has a small number of direct targets. Finally, we isolated and characterized several point mutations in Aah1p, which increase its stability during quiescence. The majority of the mutated residues are located in two distinct exposed regions in the Aah1p three-dimensional model structure. Two hybrid experiments strongly suggest that these domains are directly involved in interaction with Saf1p. Importantly, we obtained a mutation in Aah1p that does not affect the protein interaction with Saf1p but abolishes Aah1p degradation. Because this mutated residue is an exposed lysine in the Aah1p three-dimensional model, we propose that it is likely to be a major ubiquitylation site. All together, our data strongly argue for Saf1p being a bona fide Skp1-Cullin-F-box subunit. 相似文献
25.
Van Impe K Hubert T De Corte V Vanloo B Boucherie C Vandekerckhove J Gettemans J 《Traffic (Copenhagen, Denmark)》2008,9(5):695-707
The small GTPase Ran plays a central role in nucleocytoplasmic transport. Nuclear transport of Ran itself depends on nuclear transport factor 2 (NTF2). Here, we report that NTF2 and Ran control nuclear import of the filamentous actin capping protein CapG. In digitonin-permeabilized cells, neither GTPγS nor the GTP hydrolysis-deficient Ran mutant RanQ69L affect transit of CapG to the nucleus in the presence of cytosol. Obstruction of nucleoporins prevents nuclear transport of CapG, and we show that CapG binds to nucleoporin62. In addition, CapG interacts with NTF2, associates with Ran and is furthermore able to bind the NTF2–Ran complex. NTF2–Ran interaction is required for CapG nuclear import. This is corroborated by a NTF2 mutant with reduced affinity for Ran and a Ran mutant that does not bind NTF2, both of which prevent CapG import. Thus, a ubiquitously expressed protein shuttles to the nucleus through direct association with NTF2 and Ran. The role of NTF2 may therefore not be solely confined to sustaining the Ran gradient in cells. 相似文献
26.
Escobar-Henriques M Balguerie A Monribot C Boucherie H Daignan-Fornier B 《The Journal of biological chemistry》2001,276(49):46237-46242
Mycophenolic acid (MPA), one of the most promising immunosuppressive drugs recently developed, is a potent inhibitor of IMP dehydrogenase, the first committed step toward GMP synthesis. We found that all the drug effects on yeast cells were prevented by bypassing GMP synthesis, thus confirming the high specificity of MPA. Although the primary target of MPA is clearly identified, we aimed to further understand how GTP depletion leads to growth arrest and developed a new approach based on proteome analysis combined with overexpression studies. Essential proteins down-expressed in the presence of MPA were identified by protein two-dimensional gel analysis and subsequently overexpressed in yeast. Two such proteins, Cdc37p and Sup45p, when overexpressed allowed partial relief of MPA toxicity, strongly suggesting that their lower amount after MPA treatment significantly contributed to the MPA effect. These conserved proteins involved in cell cycle progression and translation are therefore important secondary targets for MPA. Our data establish that MPA effects occur through inhibition of a unique primary target resulting in guanine nucleotides depletion, thereby affecting multiple cellular processes. 相似文献
27.
28.
The suppression of protoplasmic incompatibility resulting from nonallelic gene interactions has been obtained by the coupled effect of mutations in the modA and modB genes (Bernet 1971). Due to their female sterility, modA modB strains provide an experimental tool to determine whether or not the mod and incompatibility loci are involved in a function other than protoplasmic incompatibility. Present results show that modA modB female sterility is a nonautonomous trait since heterokaryotic mycelia that include a modA modB nucleus and a female fertile nucleus (wild-type, modA or modB) produce modA modB protoperithecia, which are also formed by culture on medium supplemented with specific amino acids. Using modA modB strains, which are sterile at 32 degrees and fertile at 26 degrees , we have shown that the mod genes have no specific sequential timing. Indeed, the mod mutations may prevent the achievement of the female sexual cycle at any developmental stage from before early differentiation of protoperithecia until ascospore maturation. Employing different modA and modB mutations, we have shown that protoperithecia in modA modB cultures are generally distributed in female fertile rings; this result indicates that protoperithecia occur only in mycelial areas that have a restricted range of age at the time that modA modB thalli complete growth. Furthermore, nonsense mutations of incompatibility genes suppress the modA modB female fertile rings or restrict their width, suggesting that incompatibility loci, like the mod loci, are involved in protoperithecium formation. Taken together, these results lead to the postulate that mod and incompatibility genes do not determine, sensu stricto, protoperithecial function, as previously supposed (Boucherie and Bernet 1974), but may be involved in the homeostatic control of stationary cell functions essential for the complete development of the female sexual cycle. 相似文献
29.
Xiao Pan Mathieu Streefland Ciska Dalm René H. Wijffels Dirk E. Martens 《Cytotechnology》2017,69(1):39-56
Two CHO cell clones derived from the same parental CHOBC® cell line and producing the same monoclonal antibody (BC-G, a low producing clone; BC-P, a high producing clone) were tested in four basal media in all possible combinations with three feeds (=12 conditions) in fed-batch cultures. Higher amino acid feeding did not always lead to higher mAb production. The two clones showed differences in cell physiology, metabolism and optimal medium-feed combinations. During the phase transitions of all cultures, cell metabolism showed a shift represented by lower specific consumption and production rates, except for the specific glucose consumption rate in cultures fed by Actifeed A/B. The BC-P clone fed by Actifeed A/B showed a threefold cell volume increase and an increase of the specific consumption rate of glucose in the stationary phase. Since feeding was based on glucose this resulted in accumulation of amino acids for this feed, while this did not occur for the poorer feed (EFA/B). The same feed also led to an increase of cell size for the BC-G clone, but to a lesser extent. 相似文献
30.
Perrot M Guieysse-Peugeot AL Massoni A Espagne C Claverol S Silva RM Jenö P Santos M Bonneu M Boucherie H 《Proteomics》2007,7(7):1117-1120
To improve the potential of two-dimensional gel electrophoresis for proteomic investigations in yeast we have undertaken the systematic identification of Saccharomyces cerevisiae proteins separated on 2-D gels. We report here the identification of 187 novel protein spots. They were identified by two methods, mass spectrometry and gene inactivation. These identifications extend the number of protein spots identified on our yeast 2-D proteome map to 602, i.e. nearly half the detectable spots of the proteome map. These spots correspond to 417 different proteins. The reference map and the list of identified proteins can be accessed on the Yeast Protein Map server (www.ibgc.u-bordeaux2.fr/YPM). 相似文献