首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   24篇
  2023年   1篇
  2022年   3篇
  2021年   8篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   8篇
  2015年   15篇
  2014年   21篇
  2013年   24篇
  2012年   23篇
  2011年   22篇
  2010年   15篇
  2009年   11篇
  2008年   17篇
  2007年   27篇
  2006年   16篇
  2005年   6篇
  2004年   20篇
  2003年   19篇
  2002年   20篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1968年   1篇
  1958年   1篇
排序方式: 共有354条查询结果,搜索用时 296 毫秒
41.
Relationships among low MW hydrophobic proteins from wheat endosperm   总被引:1,自引:0,他引:1  
Low MW proteins extractable with chloroform-methanol mixtures from wheat endosperm have been purified from different Triticum species and partially characterized. Their amino acid composition and MWs are consistent with previous genetic evidence concerning relationships among these proteins: proteins CM1 and CM2 are homoeologous (ancestral homologues); proteins CM3 and CM3′ are allelic variants; proteins 16 and 17 are homoeologous.  相似文献   
42.
43.
The impact and control of biofouling in marine aquaculture: a review   总被引:2,自引:0,他引:2  
Biofouling in marine aquaculture is a specific problem where both the target culture species and/or infrastructure are exposed to a diverse array of fouling organisms, with significant production impacts. In shellfish aquaculture the key impact is the direct fouling of stock causing physical damage, mechanical interference, biological competition and environmental modification, while infrastructure is also impacted. In contrast, the key impact in finfish aquaculture is the fouling of infrastructure which restricts water exchange, increases disease risk and causes deformation of cages and structures. Consequently, the economic costs associated with biofouling control are substantial. Conservative estimates are consistently between 5-10% of production costs (equivalent to US$ 1.5 to 3 billion yr(-1)), illustrating the need for effective mitigation methods and technologies. The control of biofouling in aquaculture is achieved through the avoidance of natural recruitment, physical removal and the use of antifoulants. However, the continued rise and expansion of the aquaculture industry and the increasingly stringent legislation for biocides in food production necessitates the development of innovative antifouling strategies. These must meet environmental, societal, and economic benchmarks while effectively preventing the settlement and growth of resilient multi-species consortia of biofouling organisms.  相似文献   
44.
Leiomyoma are common tumors arising within the uterus that feature excessive deposition of a stiff, disordered extracellular matrix (ECM). Mechanical stress is a critical determinant of excessive ECM deposition and increased mechanical stress has been shown to be involved in tumorigenesis. Here we tested the viscoelastic properties of leiomyoma and characterized dynamic and static mechanical signaling in leiomyoma cells using three approaches, including measurement of active RhoA. We found that the peak strain and pseudo-dynamic modulus of leiomyoma tissue was significantly increased relative to matched myometrium. In addition, leiomyoma cells demonstrated an attenuated response to applied cyclic uniaxial strain and to variation in substrate stiffness, relative to myometrial cells. However, on a flexible pronectin-coated silicone substrate, basal levels and lysophosphatidic acid-stimulated levels of activated RhoA were similar between leiomyoma and myometrial cells. In contrast, leiomyoma cells plated on a rigid polystyrene substrate had elevated levels of active RhoA, compared to myometrial cells. The results indicate that viscoelastic properties of the ECM of leiomyoma contribute significantly to the tumor's inherent stiffness and that leiomyoma cells have an attenuated sensitivity to mechanical cues. The findings suggest there may be a fundamental alteration in the communication between the external mechanical environment (extracellular forces) and reorganization of the actin cytoskeleton mediated by RhoA in leiomyoma cells. Additional research will be needed to elucidate the mechanism(s) responsible for the attenuated mechanical signaling in leiomyoma cells.  相似文献   
45.
The unique redox and catalytic chemistry of Cu has justified the development of novel Cu complexes for different therapeutic uses including cancer therapy. In this work, four pyridine-containing aza-macrocyclic copper(II) complexes were prepared (CuL1-CuL4) varying in ring size and/or substituents and their superoxide scavenging activity evaluated. CuL3, the most active superoxide scavenger, was further studied as a modulator of the cytotoxicity of oxaliplatin in epithelial breast MCF10A cells and in MCF7 breast cancer cells. Our results show that CuL3 enhances the therapeutic window of oxaliplatin, by both protecting non-tumour cells and increasing its cytotoxic effect in breast carcinoma cells. CuL3 is thus a promising complex to be further studied and to be used as a lead compound for the optimization of novel chemotherapy sensitizers.  相似文献   
46.
Structure and regulation of the vacuolar ATPases   总被引:2,自引:0,他引:2  
The vacuolar (H(+))-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for both acidification of intracellular compartments and, for certain cell types, proton transport across the plasma membrane. Intracellular V-ATPases function in both endocytic and intracellular membrane traffic, processing and degradation of macromolecules in secretory and digestive compartments, coupled transport of small molecules such as neurotransmitters and ATP and in the entry of pathogenic agents, including envelope viruses and bacterial toxins. V-ATPases are present in the plasma membrane of renal cells, osteoclasts, macrophages, epididymal cells and certain tumor cells where they are important for urinary acidification, bone resorption, pH homeostasis, sperm maturation and tumor cell invasion, respectively. The V-ATPases are composed of a peripheral domain (V(1)) that carries out ATP hydrolysis and an integral domain (V(0)) responsible for proton transport. V(1) contains eight subunits (A-H) while V(0) contains six subunits (a, c, c', c', d and e). V-ATPases operate by a rotary mechanism in which ATP hydrolysis within V(1) drives rotation of a central rotary domain, that includes a ring of proteolipid subunits (c, c' and c'), relative to the remainder of the complex. Rotation of the proteolipid ring relative to subunit a within V(0) drives active transport of protons across the membrane. Two important mechanisms of regulating V-ATPase activity in vivo are reversible dissociation of the V(1) and V(0) domains and changes in coupling efficiency of proton transport and ATP hydrolysis. This review focuses on recent advances in our lab in understanding the structure and regulation of the V-ATPases.  相似文献   
47.
Function, structure and regulation of the vacuolar (H+)-ATPases   总被引:2,自引:0,他引:2  
The vacuolar ATPases (or V-ATPases) are ATP-driven proton pumps that function to both acidify intracellular compartments and to transport protons across the plasma membrane. Intracellular V-ATPases function in such normal cellular processes as receptor-mediated endocytosis, intracellular membrane traffic, prohormone processing, protein degradation and neurotransmitter uptake, as well as in disease processes, including infection by influenza and other viruses and killing of cells by anthrax and diphtheria toxin. Plasma membrane V-ATPases are important in such physiological processes as urinary acidification, bone resorption and sperm maturation as well as in human diseases, including osteopetrosis, renal tubular acidosis and tumor metastasis. V-ATPases are large multi-subunit complexes composed of a peripheral domain (V1) responsible for hydrolysis of ATP and an integral domain (V0) that carries out proton transport. Proton transport is coupled to ATP hydrolysis by a rotary mechanism. V-ATPase activity is regulated in vivo using a number of mechanisms, including reversible dissociation of the V1 and V0 domains, changes in coupling efficiency of proton transport and ATP hydrolysis and changes in pump density through reversible fusion of V-ATPase containing vesicles. V-ATPases are emerging as potential drug targets in treating a number of human diseases including osteoporosis and cancer.  相似文献   
48.
49.
Creoles of Color of the Gulf South, James H. Dormon. ed. Knoxville: University of Tennessee Press, 1996. 190 pp.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号