首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   920篇
  免费   61篇
  2023年   1篇
  2022年   6篇
  2021年   18篇
  2020年   5篇
  2019年   11篇
  2018年   25篇
  2017年   17篇
  2016年   31篇
  2015年   48篇
  2014年   53篇
  2013年   85篇
  2012年   70篇
  2011年   81篇
  2010年   62篇
  2009年   48篇
  2008年   54篇
  2007年   60篇
  2006年   57篇
  2005年   50篇
  2004年   32篇
  2003年   46篇
  2002年   45篇
  2001年   9篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   8篇
  1994年   7篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有981条查询结果,搜索用时 31 毫秒
191.
A case of a 62-year-old man with Candida krusei peritonitis secondary to duodenal perforation due to Candida duodenitis that was successfully treated with a 14-day course of caspofungin is reported. The potential role of Candida infection in the pathogenesis of peptic ulcers and duodenal perforation is considered. If this role is confirmed, antifungal treatment should be included in the therapeutic armamentarium of peptic disease.  相似文献   
192.
Diabetic nephropathy is associated with cardiovascular morbidity. Angiotensin-converting enzyme (ACE) inhibitors provide imperfect renoprotection in advanced type 2 diabetes, and cardiovascular risk remains elevated. Endothelin (ET)-1 has a role in renal and cardiac dysfunction in diabetes. Here, we assessed whether combination therapy with an ACE inhibitor and ET(A) receptor antagonist provided reno- and cardioprotection in rats with overt type 2 diabetes. Four groups of Zucker diabetic fatty (ZDF) rats were treated orally from 4 (when proteinuric) to 8 mo with vehicle, ramipril (1 mg/kg), sitaxsentan (60 mg/kg), and ramipril plus sitaxsentan. Lean rats served as controls. Combined therapy ameliorated proteinuria and glomerulosclerosis mostly as a result of the action of ramipril. Simultaneous blockade of ANG II and ET-1 pathways normalized renal monocyte chemoattractant protein-1 and interstitial inflammation. Cardiomyocyte loss, volume enlargement, and capillary rarefaction were prominent abnormalities of ZDF myocardium. Myocyte volume was reduced by ramipril and sitaxsentan, which also ameliorated heart capillary density. Drug combination restored myocardial structure and reestablished an adequate capillary network in the presence of increased cardiac expression of VEGF/VEGFR-1, and significant reduction of oxidative stress. In conclusion, in type 2 diabetes concomitant blockade of ANG II synthesis and ET-1 biological activity through an ET(A) receptor antagonist led to substantial albeit not complete renoprotection, almost due to the ACE inhibitor. The drug combination also showed cardioprotective properties, which however, were mainly dependent on the contribution of the ET(A) receptor antagonist through the action of VEGF.  相似文献   
193.
In the nervous system, protease-activated receptors (PARs), which are activated by thrombin and other extracellular proteases, are expressed widely at both neuronal and glial levels and have been shown to be involved in several brain pathologies. As far as the glial receptors are concerned, previous experiments performed in rat hippocampus showed that expression of PAR-1, the prototypic member of the PAR family, increased in astrocytes both in vivo and in vitro following treatment with trimethyltin (TMT). TMT is an organotin compound that induces severe hippocampal neurodegeneration associated with astrocyte and microglia activation. In the present experiments, the authors extended their investigation to microglial cells. In particular, by 7 days following TMT intoxication in vivo, confocal immunofluorescence revealed an evident PAR-1-related specific immunoreactivity in OX-42-positive microglial cells of the CA3 and hilus hippocampal regions. In line with the in vivo results, when primary rat microglial cells were treated in vitro with TMT, a strong upregulation of PAR-1 was observed by immunocytochemistry and Western blot analysis. These data provide further evidence that PAR-1 may be involved in microglial response to brain damage.  相似文献   
194.
Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) regulates LDL cholesterol levels by inhibiting LDL receptor (LDLr)-mediated cellular LDL uptake. We have identified a fragment antigen-binding (Fab) 1D05 which binds PCSK9 with nanomolar affinity. The fully human antibody 1D05-IgG2 completely blocks the inhibitory effects of wild-type PCSK9 and two gain-of-function human PCSK9 mutants, S127R and D374Y. The crystal structure of 1D05-Fab bound to PCSK9 reveals that 1D05-Fab binds to an epitope on the PCSK9 catalytic domain which includes the entire LDLr EGF(A) binding site. Notably, the 1D05-Fab CDR-H3 and CDR-H2 loops structurally mimic the EGF(A) domain of LDLr. In a transgenic mouse model (CETP/LDLr-hemi), in which plasma lipid and PCSK9 profiles are comparable to those of humans, 1D05-IgG2 reduces plasma LDL cholesterol to 40% and raises hepatic LDLr protein levels approximately fivefold. Similarly, in healthy rhesus monkeys, 1D05-IgG2 effectively reduced LDL cholesterol 20%-50% for over 2 weeks, despite its relatively short terminal half-life (t(1/2) = 3.2 days). Importantly, the decrease in circulating LDL cholesterol corresponds closely to the reduction in free PCSK9 levels. Together these results clearly demonstrate that the LDL-lowering effect of the neutralizing anti-PCSK9 1D05-IgG2 antibody is mediated by reducing the amount of PCSK9 that can bind to the LDLr.  相似文献   
195.
DeMase D  Zeng L  Cera C  Fasullo M 《DNA Repair》2005,4(1):59-69
In response to DNA damage, the Saccharomyces cerevisiae securin Pds1 blocks anaphase promotion by inhibiting ESP1-dependent degradation of cohesins. PDS1 is positioned downstream of the MEC1- and RAD9-mediated DNA damage-induced signal transduction pathways. Because cohesins participate in postreplicative repair and the pds1 mutant is radiation sensitive, we identified DNA repair pathways that are PDS1-dependent. We compared the radiation sensitivities and recombination phenotypes of pds1, rad9, rad51 single and double mutants, and found that whereas pds1 rad9 double mutants were synergistically more radiation sensitive than single mutants, pds1 rad51 mutants were not. To determine the role of PDS1 in recombinational repair pathways, we measured spontaneous and DNA damage-associated sister chromatid exchanges (SCEs) after exposure to X rays, UV and methyl methanesulfonate (MMS) and after the initiation of an HO endonuclease-generated double-strand break (DSB). The rates of spontaneous SCE and frequencies of DNA damage-associated SCE were similar in wild type and pds1 strains, but the latter exhibited reduced viability after exposure to DNA damaging agents. To determine whether pds1 mutants were defective in other pathways for DSB repair, we measured both single-strand annealing (SSA) and non-homologous end joining (NHEJ) in pds1 mutants. We found that the pds1 mutant was defective in SSA but efficient at ligating cohesive ends present on a linear plasmid. We therefore suggest that checkpoint genes control different pathways for DSB repair, and PDS1 and RAD9 have different roles in recombinational repair.  相似文献   
196.
In recent years there has been an increasing awareness of the role of P2X7, a receptor for extracellular ATP, in modulating physiopathological mechanisms in the central nervous system. In particular, P2X7 has been shown to be implicated in neuropsychiatry, chronic pain, neurodegeneration and neuroinflammation. Remarkably, P2X7 has also been shown to be a ‘gene modifier’ in amyotrophic lateral sclerosis (ALS): the receptor is upregulated in spinal cord microglia in human and rat at advanced stages of the disease; in vitro, activation of P2X7 exacerbates pro-inflammatory responses in microglia that have an ALS phenotype, as well as toxicity towards neuronal cells. Despite this detrimental in vitro role of P2X7, in SOD1-G93A mice lacking P2X7, the clinical onset of ALS was significantly accelerated and disease progression worsened, thus indicating that the receptor might have some beneficial effects, at least at certain stages of disease. In order to clarify this dual action of P2X7 in ALS pathogenesis, in the present work we used the antagonist Brilliant Blue G (BBG), a blood-brain barrier permeable and safe drug that has already been proven to reduce neuroinflammation in traumatic brain injury, cerebral ischemia-reperfusion, neuropathic pain and experimental autoimmune encephalitis. We tested BBG in the SOD1-G93A ALS mouse model at asymptomatic, pre-symptomatic and late pre-symptomatic phases of disease. BBG at late pre-onset significantly enhanced motor neuron survival and reduced microgliosis in lumbar spinal cord, modulating inflammatory markers such as NF-κB, NADPH oxidase 2, interleukin-1β, interleukin-10 and brain-derived neurotrophic factor. This was accompanied by delayed onset and improved general conditions and motor performance, in both male and female mice, although survival appeared unaffected. Our results prove the twofold role of P2X7 in the course of ALS and establish that P2X7 modulation might represent a promising therapeutic strategy by interfering with the neuroinflammatory component of the disease.KEY WORDS: ALS, Brilliant Blue G, Microglia, Motor neuron, P2X7  相似文献   
197.

Introduction

Celiac disease (CD) may initially present as a neurological disorder or may be complicated by neurological changes. To date, neurophysiological studies aiming to an objective evaluation of the potential central nervous system involvement in CD are lacking.

Objective

To assess the profile of cortical excitability to Transcranial Magnetic Stimulation (TMS) in a group of de novo CD patients.

Materials and methods

Twenty CD patients underwent a screening for cognitive and neuropsychiatric symptoms by means of the Mini Mental State Examination and the Structured Clinical Interview for DSM-IV Axis I Disorders, respectively. Instrumental exams, including electroencephalography and brain computed tomography, were also performed. Cortico-spinal excitability was assessed by means of single and paired-pulse TMS using the first dorsal interosseus muscle of the dominant hand. TMS measures consisted of resting motor threshold, motor evoked potentials, cortical silent period (CSP), intracortical inhibition (ICI) and facilitation (ICF). None of the CD was on gluten-free diet. A group of 20 age-matched healthy controls was used for comparisons.

Results

CD showed a significantly shorter CSP (78.0 vs 125.0 ms, p<0.025), a reduced ICI (0.3 vs 0.2, p<0.045) and an enhanced ICF (1.1 vs 0.7, p<0.042) compared to controls. A dysthymic disorder was identified in five patients. The effect size between dysthymic and non-dysthymic CD patients indicated a low probability of interference with the CSP (Cohen''s d -0.414), ICI (-0.278) and ICF (-0.292) measurements.

Conclusion

A pattern of cortical excitability characterized by “disinhibition” and “hyperfacilitation” was found in CD patients. Immune system dysregulation might play a central role in triggering changes of the motor cortex excitability.  相似文献   
198.

Background

Systemic lupus erythematosus (SLE) is an autoimmune disease with complex pathogenesis in which genes and environmental factors are involved. We aimed at analyzing previously identified loci associated with SLE or with other autoimmune and/or inflammatory disorders (STAT4, IL10, IL23R, IRAK1, PSORS1C1, HCP5, MIR146a, PTPN2, ERAP1, ATG16L1, IRGM) in a sample of Italian SLE patients in order to verify or confirm their possible involvement and relative contribution in the disease.

Materials and methods

Two hundred thirty-nine consecutive SLE patients and 278 matched healthy controls were enrolled. Study protocol included complete physical examination, and clinical and laboratory data collection. Nineteen polymorphisms were genotyped by allelic discrimination assays. A case-control association study and a genotype-phenotype correlation were performed.

Results

STAT4 was the most associated gene [P = 3×10−7, OR = 2.13 (95% CI: 1.59–2.85)]. IL10 confirmed its association with SLE [rs3024505: P = 0.02, OR = 1.52 (95% CI: 1.07–2.16)]. We describe a novel significant association between HCP5 locus and SLE susceptibility [rs3099844: P = 0.01, OR = 2.06 (95% CI: 1.18–3.6)]. The genotype/phenotype correlation analysis showed several associations including a higher risk to develop pericarditis with STAT4, and an association between HCP5 rs3099844 and anti-Ro/SSA antibodies.

Conclusions

STAT4 and IL10 confirm their association with SLE. We found that some SNPs in PSORS1C1, ATG16L1, IL23R, PTPN2 and MIR146a genes can determine particular disease phenotypes. HCP5 rs3099844 is associated with SLE and with anti-Ro/SSA. This polymorphism has been previously found associated with cardiac manifestations of SLE, a condition related with anti-Ro/SSA antibodies. Thus, our results may provide new insights into SLE pathogenesis.  相似文献   
199.
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号