首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   921篇
  免费   61篇
  2023年   1篇
  2022年   7篇
  2021年   18篇
  2020年   5篇
  2019年   11篇
  2018年   25篇
  2017年   17篇
  2016年   31篇
  2015年   48篇
  2014年   53篇
  2013年   85篇
  2012年   70篇
  2011年   81篇
  2010年   62篇
  2009年   48篇
  2008年   54篇
  2007年   60篇
  2006年   57篇
  2005年   50篇
  2004年   32篇
  2003年   46篇
  2002年   45篇
  2001年   9篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   8篇
  1994年   7篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有982条查询结果,搜索用时 15 毫秒
161.
162.
163.
164.
Rab9 is a small GTPase that localizes to the trans‐Golgi Network (TGN) and late endosomes. Its main function has long been connected to the recycling of mannose‐6‐phosphate receptors (MPRs). However, recent studies link Rab9 also to autophagy and lysosome biogenesis. In this paper, using confocal imaging, we characterize for the first time the live dynamics of the Rab9 constitutively active mutant, Rab9Q66L. We find that it localizes predominantly to late endosomes and that its expression in HeLa cells disperses TGN46 and cation‐independent (CI‐MPR) away from the Golgi yet, has no effect on the retrograde transport of CI‐MPR. We also show that CI‐MPR and Rab9 enter the endosomal pathway together at the transition stage between early, Rab5‐positive, and late, Rab7a‐positive, endosomes. CI‐MPR localizes transiently to separate domains on these endosomes, where vesicles carrying CI‐MPR attach and detach within seconds. Taken together, our results demonstrate that Rab9 mediates the delivery of CI‐MPR to the endosomal pathway, entering the maturing endosome at the early‐to‐late transition.   相似文献   
165.
This contribution describes measurements of lipid bilayer domain line tension based on two-dimensional thermal undulations of membranes with liquid ordered/liquid disordered phase coexistence and near-critical composition at room temperature. Lateral inhomogeneity of lipid and protein composition is currently a subject of avid research aimed at determining both fundamental properties and biological relevance of membrane domains. Line tension at fluid lipid bilayer membrane domain boundaries controls the kinetics of domain growth and therefore regulates the size of compositional heterogeneities. High line tension promotes membrane domain budding and fission. Line tension could therefore be an important control parameter regulating functional aspects of biological membranes. Here the established method of fluid domain flicker spectroscopy is applied to examine thermal domain wall fluctuations of phase-separated bilayer membranes. We find a Gaussian probability distribution for the first few excited mode amplitudes, which permits an analysis by means of appropriately specialized capillary wave theory. Time autocorrelation functions are found to decay exponentially, and relaxation times are fitted by means of a hydrodynamic theory relating line tensions and excited mode relaxation kinetics. Line tensions below 1 pN are obtained, with these two approaches yielding similar results. We examine experimental artifacts that perturb the Fourier spectrum of domain traces and discuss ways to identify the number of modes that yield reliable line tension information.  相似文献   
166.
Obestatin and its derivative Ob(11-23) are recently discovered peptides produced in the rat stomach. They have proven to be involved in the regulation of energy balance, inhibiting feeding, causing reductions in food intake, body weight and jejunal contraction in rodents. The G-protein coupled receptor, GPR39, was originally proposed as being an obestatin target receptor, but this remains controversial. As such, the molecular mechanism for obestatin's effects in vivo is still uncertain. Here we report the CD and NMR conformational analysis of obestatin and Ob(11-23). Both peptides assume a regular secondary structure in the C-terminal region of the molecule. In this region, structural elements similar to other GPCR binding neuropeptides support the identity of obestatin as a new and functionally autonomous GPCR ligand. Conversely sequence and conformational specificity point to a new farmacoforic structure, on which innovative derivatives with a potential role in the treatment of obesity can be designed and synthetized.  相似文献   
167.
Nature and subcellular localization of 1H-NMR-detectable mobile lipid domains (ML) were investigated by NMR, Nile red fluorescence and electron microscopy, in NIH-3T3 fibroblasts and their H-ras transformants (3T3ras) transfected with a high number of oncogene copies. Substantial ML levels (ratio of (CH2)n/CH3 peak areas R=1. 56+/-0.33) were associated in untransformed fibroblasts with both (a) intramembrane amorphous lipid vesicles, about 60 nm in diameter, distinct from caveolae; and (b) cytoplasmic, osmiophilic lipid bodies surrounded by own membrane, endowed of intramembrane particles. 2D NMR maps demonstrated that ML comprised both mono- and polyunsaturated fatty chains. Lower ML signals were detected in 3T3ras (R=0.76+/-0.37), under various conditions of cell growth. Very few (if any) lipid bodies and vesicles were detected in the cytoplasmic or membrane compartments of 3T3ras cells with R<0.4, while only intramembrane lipid vesicles were associated with moderate R values. Involvement of phosphatidylcholine hydrolysis in ML generation was demonstrated by selective inhibition of endogenous phospholipase C (PC-plc) or by exposure to bacterial PC-plc. This study indicates that: (1) both cytoplasmic lipid bodies and membrane vesicles (possibly in mutual dynamic exchange) may contribute (although to a different extent) to ML signals; and (2) high levels of ras-transfection either inhibit ML formation or facilitate their extrusion from the cell.  相似文献   
168.
The phenotype of Apert osteoblasts differs from that of normal osteoblasts in the accumulation of macromolecules in the extracellular matrix. Apert osteoblasts increase type I collagen, fibronectin and glycosaminoglycans secretion compared with normal osteoblasts. Because the extracellular matrix macromolecule accumulation is greatly modulated by transforming growth factor-beta(1), we examined the ability of normal and Apert osteoblasts to secrete transforming growth factor-beta(1) by CCL-64 assay and to produce transforming growth factor-beta(1 )by analysis of the mRNA expression of transforming growth factor-beta(1). Northern blot analysis revealed an increased amount of transforming growth factor-beta(1) mRNA expression in Apert osteoblasts compared with normal ones. Moreover, the level of the active transforming growth factor-beta(1) isoform was higher in Apert than in normal media. In pathologic cells, the increase in transforming growth factor-beta(1) gene expression was associated with a parallel increase in the factor secreted into the medium. The level of transforming growth factor-beta(1) was decreased by the addition of basic fibroblast growth factor. Transforming growth factor-beta(1) is controlled temporally and spatially during skeletal tissue development and produces complex stimulatory and inhibitory changes in osteoblast functions. We hypothesise that in vitro differences between normal and Apert osteoblasts may be correlated to different transforming growth factor-beta(1) cascade patterns, probably due to an altered balance between transforming growth factor-beta(1) and basic fibroblast growth factor.  相似文献   
169.
Peroxynitrite, the product of the radical-radical reaction between nitric oxide and superoxide anion, is a potent oxidant involved in tissue damage in neurodegenerative disorders. We investigated the modifications induced by peroxynitrite in tyrosine residues of proteins from synaptosomes. Peroxynitrite treatment (> or =50 microM) induced tyrosine nitration and increased tyrosine phosphorylation. Synaptophysin was identified as one of the major nitrated proteins and pp60src kinase as one of the major phosphorylated substrates. Further fractionation of synaptosomes revealed nitrated synaptophysin in the synaptic vesicles, whereas phosphorylated pp60src was enriched in the postsynaptic density fraction. Tyrosine phosphorylation was increased by treatment with 50-500 microM peroxynitrite and decreased by higher concentrations, suggesting a possible activation/inactivation of kinases. Immunocomplex kinase assay proved that peroxynitrite treatment of synaptosomes modulated the pp60src autophosphorylation activity. The addition of bicarbonate (CO2 1.3 mM) produced a moderate enhancing effect on some nitrated proteins but significantly protected the activity of pp60src against peroxynitrite-mediated inhibition so that at 1 mM peroxynitrite, the kinase was still more active than in untreated synaptosomes. The phosphotyrosine phosphatase activity of synaptosomes was inhibited by peroxynitrite (> or =50 microM) but significantly protected by CO2. Thus, the increase of phosphorylation cannot be attributed to peroxynitrite-mediated inhibition of phosphatases. We suggest that peroxynitrite may regulate the posttranslational modification of tyrosine residues in pre- and postsynaptic proteins. Identification of the major protein targets gives insight into the pathways possibly involved in neuronal degeneration associated with peroxynitrite overproduction.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号