首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   15篇
  248篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   10篇
  2020年   6篇
  2019年   6篇
  2018年   13篇
  2017年   7篇
  2016年   15篇
  2015年   19篇
  2014年   20篇
  2013年   29篇
  2012年   24篇
  2011年   15篇
  2010年   12篇
  2009年   6篇
  2008年   7篇
  2007年   9篇
  2006年   10篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有248条查询结果,搜索用时 15 毫秒
101.
102.
Heme is a ubiquitous molecule that has a number of physiological roles. The toxic effects of this molecule have been demonstrated in various models, based on both its pro-oxidant nature and through a detergent mechanism. It is estimated that about 10 mM of heme is released during blood digestion in the blood-sucking bug's midgut. The parasite Trypanosoma cruzi, the agent of Chagas' disease, proliferates in the midgut of the insect vector; however, heme metabolism in trypanosomatids remains to be elucidated. Here we provide a mechanistic explanation for the proliferative effects of heme on trypanosomatids. Heme, but not other porphyrins, induced T. cruzi proliferation, and this phenomenon was accompanied by a marked increase in reactive oxygen species (ROS) formation in epimastigotes when monitored by ROS-sensitive fluorescent probes. Heme-induced ROS production was time- and concentration-dependent. In addition, lipid peroxidation and the formation of 4-hydroxy-2-nonenal (4-HNE) adducts with parasite proteins were increased in epimastigotes in the presence of heme. Conversely, the antioxidants urate and GSH reversed the heme-induced ROS. Urate also decreased parasite proliferation. Among several protein kinase inhibitors tested only specific inhibitors of CaMKII, KN93 and Myr-AIP, were able to abolish heme-induced ROS formation in epimastigotes leading to parasite growth impairment. Taken together, these data provide new insight into T. cruzi- insect vector interactions: heme, a molecule from the blood digestion, triggers epimastigote proliferation through a redox-sensitive signalling mechanism.  相似文献   
103.
Invasive aspergillosis is a leading cause of morbidity and mortality in immunocompromised patients, particularly in individuals with haematological malignancy and in haematopoietic stem cell transplant recipients. Nowadays, the galactomannan (GM) assay has been widely used as an indication of invasive aspergillosis, even though the test is known to generate false-positive results. The aim of this study was to compare the performance of GM and real-time PCR (qPCR) to detected Aspergillus in blood samples obtained from high-risk haematological patients. Haematological patients were screened twice weekly with GM testing, which was performed by the Platelia ELISA kit. An additional sample of whole blood (4 ml) was obtained for the purpose of qPCR testing. Sixty-four samples from 12 patients with haematopoietic stem cell transplant or haematological malignancy were studied. The overall accordance between GM and qPCR tests was 96.9 % (62 samples). Only two samples showed contradictory results, with positive GM test and negative real-time PCR results. Based on the high concordance between GM and qPCR in terms of negative results, the main utility of qPCR could be in the confirmation of positive results seen with GM testing.  相似文献   
104.
105.
Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain–deficient dy3K/dy3K mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain–deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).Congenital muscular dystrophy with laminin α2 chain deficiency, also known as MDC1A,1 is a severe muscle wasting disease for which there is no cure. MDC1A is caused by mutations in the LAMA2 gene that lead to complete or partial deficiency of laminin α2 chain (13). Although the primary defect in MDC1A is known, the secondary molecular mechanisms eventually leading to muscle degeneration are not fully understood. In normal muscle, laminin α2 chain binds to the cell surface receptors dystroglycan and integrin α7β1, which both indirectly bind the cytoskeleton (47). Both of these adhesion complexes are important for normal skeletal muscle function, and laminin α2 chain binding to dystroglycan contributes to the maintenance of sarcolemmal integrity and protects muscles from damage (8), whereas laminin α2 chain binding to integrin α7β1 promotes myofiber survival (9, 10). In MDC1A, laminin α2 chain is absent or severely reduced, and the expression of dystroglycan and α7β1 is also dysregulated in MDC1A (9, 11, 12). Thus, the structural link is broken, and the yet to be determined downstream intracellular signaling pathways are also interrupted. Consequently, laminin α2 chain–deficient muscle fibers undergo degeneration–regeneration cycles, but rather quickly regeneration fails and muscle fibers die by apoptosis/necrosis followed by a major replacement of muscle tissue with connective tissue (3, 7). In order to unravel novel secondary molecular mechanisms, which could indicate new therapeutic targets, we decided to evaluate the protein expression profile in laminin α2 chain–deficient dy3K/dy3K muscle. Several proteomic profiling studies of dystrophin-deficient muscles (Duchenne muscular dystrophy) have been performed (1320), as well as some with dysferlin-deficient muscles (Limb-girdle muscular dystrophy type 2B, Miyoshi myopathy) (21, 22). They all showed a great number of proteins that were differentially expressed in different dystrophic muscles and at different ages (1322). However, proteomic analyses of laminin α2 chain–deficient muscle have not yet been performed. We here used multidimensional protein identification technology with tandem mass tags (TMT), a powerful shotgun label-based proteomic method that separates peptides in two-dimensional liquid chromatography (23, 24). We identified around 100 proteins that were differentially expressed in laminin α2 chain–deficient gastrocnemius and diaphragm muscles relative to the corresponding wild-type muscles, and the differential expression of selected proteins was verified with Western blot analysis or immunofluorescence.  相似文献   
106.
Plant Molecular Biology - NADP-ME2 from Arabidopsis thaliana exhibits a distinctive and complex regulation by fumarate, acting as an activator or an inhibitor according to substrate and effector...  相似文献   
107.
Single Nucleotide Polymorphisms are invaluable markers for tracing the genetic basis of inheritable traits and the ability to create marker libraries quickly is vital for timely identification of target genes. Next-generation sequencing makes it possible to sample a genome rapidly, but polymorphism detection relies on having a reference genome to which reads can be aligned and variants detected. We present Bubbleparse, a method for detecting variants directly from next-generation reads without a reference sequence. Bubbleparse uses the de Bruijn graph implementation in the Cortex framework as a basis and allows the user to identify bubbles in these graphs that represent polymorphisms, quickly, easily and sensitively. We show that the Bubbleparse algorithm is sensitive and can detect many polymorphisms quickly and that it performs well when compared with polymorphism detection methods based on alignment to a reference in Arabidopsis thaliana. We show that the heuristic can be used to maximise the number of true polymorphisms returned, and with a proof-of-principle experiment show that Bubbleparse is very effective on data from unsequenced wild relatives of potato and enabled us to identify disease resistance linked genes quickly and easily.  相似文献   
108.
The present study investigated the effects of ΔΨ and ΔpH (pH gradient) on the interaction of cytochrome c with a mitochondrial mimetic membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cardiolipin (CL) leading to vesicle fusion. ΔpH generated by lowered bulk pH (pHout) of PCPECL liposomes, with an internal pH (pHin) of 8.0, favored vesicle fusion with a titration sigmoidal profile (pK a?~?6.9). Conversely, ΔpH generated by enhanced pHin of PCPECL at a pHout of 6.0 favored the fusion of vesicles with a linear profile. We did not observe a significant amount of liposome fusion when ΔpH was generated by lowered pHin at a pHout of 8.0. At bulk acidic pH, ΔΨ generated by Na+ gradient also favored cyt c-promoted vesicle fusion. At acidic and alkaline pHout, the presence of ΔpH and ΔΨ did not affect cytochrome c binding affinity measured by pyrene quenching. Therefore, cytochrome c-mediated PC/PE/CL vesicle fusion is dependent of ionization of the protein site L (acidic pH) and the presence of transmembrane potential. The effect of transmembrane potential is probably related to the generation of defects on the lipid bilayer. These results are consistent with previous reports showing that cytochrome c release prior to the dissipation of the ΔΨM blocks inner mitochondrial membrane fusion during apoptosis.  相似文献   
109.
Ser acetyltransferase (SATase; EC 2.3.1.30) catalyzes the formation of O-acetyl-Ser from L-Ser and acetyl-CoA, leading to synthesis of Cys. According to its position at the decisive junction of the pathways of sulfur assimilation and amino acid metabolism, SATases are subject to regulatory mechanisms to control the flux of Cys synthesis. In Arabidopsis (Arabidopsis thaliana) there are five genes encoding SATase-like proteins. Two isoforms, Serat3;1 and Serat3;2, were characterized with respect to their enzymatic properties, feedback inhibition by L-Cys, and subcellular localization. Functional identity of Serat3;1 and Serat3;2 was established by complementation of a SATase-deficient mutant of Escherichia coli. Cytosolic localization of Serat3;1 and Serat3;2 was confirmed by using fusion construct with the green fluorescent protein. Recombinant Serat3;1 was not inhibited by L-Cys, while Serat3;2 was a strongly feedback-inhibited isoform. Quantification of expression patterns indicated that Serat2;1 is the dominant form expressed in most tissues examined, followed by Serat1;1 and Serat2;2. Although Serat3;1 and Serat3;2 were expressed weakly in most tissues, Serat3;2 expression was significantly induced under sulfur deficiency and cadmium stress as well as during generative developmental stages, implying that Serat3;1 and Serat3;2 have specific roles when plants are subjected to distinct conditions. Transgenic Arabidopsis plants expressing the green fluorescent protein under the control of the five promoters indicated that, in all Serat genes, the expression was predominantly localized in the vascular system, notably in the phloem. These results demonstrate that Arabidopsis employs a complex array of compartment-specific SATase isoforms with distinct enzymatic properties and expression patterns to ensure the provision of Cys in response to developmental and environmental changes.  相似文献   
110.
We compared two methods of zona pellucida drilling. 213 embryos were biopsied with acid Tyrode. Each biopsy took 3 minutes and the entire procedure ~29 minutes. 5% of blastomeres lysed, 49% of embryos became blastocyst and 36% of patients became pregnant. 229 embryos were biopsied with laser. Each biopsy took 30 seconds and the entire procedure ~7 minutes. 2.5% of blastomeres lysed, 50.6% of embryos became blastocyst and 47% of patients became pregnant. We can conclude that laser can be used for embryo biopsy. Reduction of embryo exposure and of removed blastomeres is associated with increased blastocysts available for transfer and a better clinical outcome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号