首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   13篇
  2023年   3篇
  2022年   1篇
  2021年   4篇
  2020年   7篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   11篇
  2013年   11篇
  2012年   12篇
  2011年   20篇
  2010年   7篇
  2009年   6篇
  2008年   11篇
  2007年   4篇
  2006年   10篇
  2005年   3篇
  2004年   8篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1993年   2篇
排序方式: 共有153条查询结果,搜索用时 687 毫秒
21.
22.
23.
α-Tocopherol (α-Toc) is involved in various physiologic processes, which present antioxidant and neuroprotective properties. High-fat diets have an important role in neurodegenerative diseases and neurological disturbances. This study aimed to investigate the effects of treatment with α-Toc and the consumption of high-fat diets on ectonucleotidase activities in synaptosomes of cerebral cortex, hippocampus and striatum of rats. Animals were divided into four different groups, which received standard diet (control), high-fat saturated diet (HF), α-Toc and high-fat saturated diet plus α-Toc (α-Toc + HF). High-fat saturated diet was administered ad libitum and α-Toc by gavage using a dose of 50 mg·kg(-1). After 3 months of treatment, animals were submitted to euthanasia, and cerebral cortex, hippocampus and striatum were collected for biochemical assays. Results showed that adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) hydrolysis in the cerebral cortex, hippocampus and striatum were decreased in HF in comparison to the other groups (P < 0·05). When rats that received HF were treated with α-Toc, the activity of the ectonucleotidases was similar to the control. ATP, ADP and AMP hydrolysis in the cerebral cortex, hippocampus and striatum were increased in the α-Toc group when compared with the other groups (P < 0·05). These findings demonstrated that the HF alters the purinergic signaling in the nervous system and that the treatment with α-Toc was capable of modulating the adenine nucleotide hydrolysis in this experimental condition.  相似文献   
24.
Rac signaling in breast cancer: a tale of GEFs and GAPs   总被引:1,自引:0,他引:1  
Rac GTPases, small G-proteins widely implicated in tumorigenesis and metastasis, transduce signals from tyrosine-kinase, G-protein-coupled receptors (GPCRs), and integrins, and control a number of essential cellular functions including motility, adhesion, and proliferation. Deregulation of Rac signaling in cancer is generally a consequence of enhanced upstream inputs from tyrosine-kinase receptors, PI3K or Guanine nucleotide Exchange Factors (GEFs), or reduced Rac inactivation by GTPase Activating Proteins (GAPs). In breast cancer cells Rac1 is a downstream effector of ErbB receptors and mediates migratory responses by ErbB1/EGFR ligands such as EGF or TGFα and ErbB3 ligands such as heregulins. Recent advances in the field led to the identification of the Rac-GEF P-Rex1 as an essential mediator of Rac1 responses in breast cancer cells. P-Rex1 is activated by the PI3K product PIP3 and Gβγ subunits, and integrates signals from ErbB receptors and GPCRs. Most notably, P-Rex1 is highly overexpressed in human luminal breast tumors, particularly those expressing ErbB2 and estrogen receptor (ER). The P-Rex1/Rac signaling pathway may represent an attractive target for breast cancer therapy.  相似文献   
25.
Myocardial infarction is a manifestation of necrotic cell death as a result of opening of the mitochondrial permeability transition (MPT). Receptor-mediated cardioprotection is triggered by an intracellular signaling pathway that includes phosphatidylinositol 3-kinase, endothelial nitric-oxide synthase, guanylyl cyclase, protein kinase G (PKG), and the mitochondrial K(ATP) channel (mitoK(ATP)). In this study, we explored the pathway that links mitoK(ATP) with the MPT. We confirmed previous findings that diazoxide and activators of PKG or protein kinase C (PKC) inhibited MPT opening. We extended these results and showed that other K(+) channel openers as well as the K(+) ionophore valinomycin also inhibited MPT opening and that this inhibition required reactive oxygen species. By using isoform-specific peptides, we found that the effects of K(ATP) channel openers, PKG, or valinomycin were mediated by a PKCepsilon. Activation of PKCepsilon by phorbol 12-myristate 13-acetate or H(2)O(2) resulted in mitoK(ATP)-independent inhibition of MPT opening, whereas activation of PKCepsilon by PKG or the specific PKCepsilon agonist psiepsilon receptor for activated C kinase caused mitoK(ATP)-dependent inhibition of MPT opening. Exogenous H(2)O(2) inhibited MPT, because of its activation of PKCepsilon, with an IC(50) of 0.4 (+/-0.1) microm. On the basis of these results, we propose that two different PKCepsilon pools regulate this signaling pathway, one in association with mitoK(ATP) and the other in association with MPT.  相似文献   
26.
Several series of dihydrostilbenamide, imidazo[2,1-a]isoindole, pyrimido[2,1-a]isoindole and phthalazinone derivatives were obtained and their vasorelaxant activity was measured on isolated rat aorta rings pre-contracted with phenylephrine (10(-5)M). Some phthalazinones attained, practically, the total relaxation of the organ at micromolar concentrations. For the most potent compound 9h (EC(50)=0.43microM) the affinities for alpha(1A), alpha(1B) and alpha(1D) adrenergic sub-receptors were determined.  相似文献   
27.
Current knowledge of iron metabolism   总被引:1,自引:0,他引:1  
Iron plays many roles in human physiology. In this article, we summarize the basic and current knowledge of this essential micronutrient on human metabolism.  相似文献   
28.
In Bufo arenarum, androgen biosynthesis occurs through a complete 5-ene pathway, including 5-androstane-3β,17β-diol as the immediate precursor of testosterone. Besides, steroidogenesis changes during the breeding period, turning from androgens to C21-steroids such as 5-pregnan-3,20-diol, 3-hydroxy-5-pregnan-20-one and 5-pregnan-3,20-dione. In B. arenarum, steroid hormones are not involved in hCG-induced spermiation, suggesting that the steroidogenic shift to C21-steroids during the breeding be not related to spermiation. The activity of 17-hydroxylase-C17–20 lyase (CypP450c17) decreases during the reproductive season, suggesting that this enzyme would represent a key enzyme in the regulation of seasonal changes. However, the increase in the affinity for pregnenolone of 3β-hydroxysteroid dehydrogenase (3HSD)/isomerase could also be involved. Moreover, the reduction in CypP450c17 leading to a reduction in C19-steroids, among them dehydroepiandrosterone (DHE), would contribute to the conversion of pregnenolone into progesterone, avoiding the non-competitive inhibition exerted by DHE on this transformation. Additionally, CypP450c17 possesses a higher affinity for pregnenolone than for progesterone, explaining the predominance of the 5-ene pathway for testosterone biosynthesis. Animals in reproductive condition showed a significant reduction in circulating androgens, enhancing the physiological relevance of all the in vitro results. The in vitro effects of mGnRH and hrFSH on testicular steroidogenesis revealed that both hormones inhibited CypP450c17 activity. In summary, these results demonstrate that, in B. arenarum, the change in testicular steroidogenesis during the reproductive period could be partially due to an FSH and GnRH-induced decrease in CypP450c17 activity.  相似文献   
29.
The ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is the major source of calcium (Ca2+) required for cardiac muscle excitation-contraction (EC) coupling. The channel is a tetramer comprised of four type 2 RyR polypeptides (RyR2) and four FK506 binding proteins (FKBP12.6). We show that protein kinase A (PKA) phosphorylation of RyR2 dissociates FKBP12.6 and regulates the channel open probability (Po). Using cosedimentation and coimmunoprecipitation we have defined a macromolecular complex comprised of RyR2, FKBP12.6, PKA, the protein phosphatases PP1 and PP2A, and an anchoring protein, mAKAP. In failing human hearts, RyR2 is PKA hyperphosphorylated, resulting in defective channel function due to increased sensitivity to Ca2+-induced activation.  相似文献   
30.
Muscarinic cholinergic mechanisms play a key role in stimulating gastric pepsinogen secretion. Studies using antagonists suggested that the M3 receptor subtype (M3R) plays a prominent role in mediating pepsinogen secretion, but in situ hybridization indicated expression of M1 receptor (M1R) in rat chief cells. We used mice that were deficient in either the M1 (M1R-/-) or M3 (M3R-/-) receptor or that lacked both receptors (M(1/3)R-/-) to determine the role of M1R and M3R in mediating cholinergic agonist-induced pepsinogen secretion. Pepsinogen secretion from murine gastric glands was determined by adapting methods used for rabbit and rat stomach. In wild-type (WT) mice, maximal concentrations of carbachol and CCK caused a 3.0- and 2.5-fold increase in pepsinogen secretion, respectively. Maximal carbachol-induced secretion from M1R-/- mouse gastric glands was decreased by 25%. In contrast, there was only a slight decrease in carbachol potency and no change in efficacy when comparing M3R-/- with WT glands. To explore the possibility that both M1R and M3R are involved in carbachol-mediated pepsinogen secretion, we examined secretion from glands prepared from M(1/3)R-/- double-knockout mice. Strikingly, carbachol-induced pepsinogen secretion was nearly abolished in glands from M(1/3)R-/- mice, whereas CCK-induced secretion was not altered. In situ hybridization for murine M1R and M3R mRNA in gastric mucosa from WT mice revealed abundant signals for both receptor subtypes in the cytoplasm of chief cells. These data clearly indicate that, in gastric chief cells, a mixture of M1 and M3 receptors mediates cholinergic stimulation of pepsinogen secretion and that no other muscarinic receptor subtypes are involved in this activity. The development of a murine secretory model facilitates use of transgenic mice to investigate the regulation of pepsinogen secretion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号