全文获取类型
收费全文 | 1339篇 |
免费 | 122篇 |
国内免费 | 2篇 |
专业分类
1463篇 |
出版年
2024年 | 2篇 |
2023年 | 8篇 |
2022年 | 14篇 |
2021年 | 25篇 |
2020年 | 15篇 |
2019年 | 18篇 |
2018年 | 33篇 |
2017年 | 23篇 |
2016年 | 47篇 |
2015年 | 78篇 |
2014年 | 86篇 |
2013年 | 89篇 |
2012年 | 102篇 |
2011年 | 87篇 |
2010年 | 78篇 |
2009年 | 55篇 |
2008年 | 87篇 |
2007年 | 85篇 |
2006年 | 89篇 |
2005年 | 89篇 |
2004年 | 88篇 |
2003年 | 72篇 |
2002年 | 61篇 |
2001年 | 16篇 |
2000年 | 8篇 |
1999年 | 7篇 |
1998年 | 14篇 |
1997年 | 7篇 |
1996年 | 7篇 |
1995年 | 8篇 |
1994年 | 12篇 |
1993年 | 6篇 |
1992年 | 3篇 |
1991年 | 3篇 |
1990年 | 5篇 |
1989年 | 1篇 |
1988年 | 6篇 |
1986年 | 2篇 |
1985年 | 3篇 |
1984年 | 7篇 |
1983年 | 2篇 |
1982年 | 5篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1978年 | 3篇 |
1977年 | 2篇 |
1976年 | 1篇 |
排序方式: 共有1463条查询结果,搜索用时 15 毫秒
31.
The uptake of 1,3-[2,3-(14)C]-butadiene and its disposition, measured as radioactivity in urine, faeces, exhaled volatiles and CO(2) during and following 6 h whole body exposure to 20 ppm butadiene has been investigated in male Sprague-Dawley rats and B6C3F1 mice. Whilst there were similarities between the two species, the uptake and metabolic distribution of butadiene were somewhat different for rats and mice. The major differences observed were in the urinary excretion of radioactivity and in the exhalation of 14C-CO(2). After 42 h from the start of exposure, 51.1% of radioactivity was eliminated in rat urine compared with 39.5% for mouse urine. 34.9% of the recovered radioactivity was exhaled by rats as 14C-CO(2), compared with 48.7% by mice. Excretion of radioactivity in faeces was similar for both species (3.8% for rats and 3.4% for mice). The tissue concentrations of 14C-butadiene equivalents measured in liver, testes, lung and blood of exposed mice were 0.493, 0460, 0.457, and 1.626 nmol/g tissue, respectively. The values for the corresponding rat tissues were 0.869, 0.329, 0.457, and 1.626 nmol butadiene equivalents/g tissue, respectively. For rats, 6.2% of recovered radioactivity (0.288 nmol butadiene equivalents/g tissue) was retained in carcasses whereas for mice the amount was 3.6% (0.334 nmol butadiene equivalents/g tissue). There were also some significant differences between the metabolic conversion of 1,3-[2,3-(14)C]-butadiene and excretion by mice following the 20 ppm whole body exposure compared to previously reported data for nose-only exposure to 200 ppm butadiene [Richardson et al., Toxicol. Sci. 49 (1999) 186]. The main difference between the high- and low-exposure studies was in the exhalation of 14C-CO(2). At the 200 ppm exposure, 40% of the radioactivity was exhaled as 14C-CO(2) by rats whereas 6% was measured by this route for mice. The proportional conversion of butadiene to CO(2) by mice was significantly greater at the low exposure concentration compared with that reported for the higher concentration. This shift was not observed for rats. The difference between species could be caused by a saturation of metabolism in mice between 20 and 200 ppm for the pathways leading to CO(2). Restraint or error in collection of CO(2) in the 200 ppm study could also be factors. 相似文献
32.
CP43, a component of Photosystem II (PSII) in higher plants, algae and cyanobacteria, is encoded by the psbC gene. Previous work demonstrated that alteration of an arginine residue occurring at position 305 to serine produced a strain (R305S) with altered PSII characteristics including lower oxygen-evolving activity, fewer assembled reaction centers, higher sensitivity to photoinactivation, etc. [Biochemistry 38 (1999) 1582]. Additionally, it was determined that the mutant exhibited an enhanced stability of its S2 state. Recently, we observed a significant chloride effect under chloride-limiting conditions. The mutant essentially lost the ability to grow photoautotrophically, assembled fewer fully functional PSII reaction centers and exhibited a very low rate of oxygen evolution. Thus, the observed phenotype of this mutation is very similar to that observed for the Delta(psb)V mutant, which lacks cytochrome c550 (Biochemistry 37 (1998) 1551). A His-tagged version of the R305S mutant was produced to facilitate the isolation of PSII particles. These particles were analyzed for the presence of cytochrome c550. Reduced minus oxidized difference spectroscopy and chemiluminescence examination of Western blots indicated that cytochrome c550 was absent in these PSII particles. Whole cell extracts from the R305S mutant, however, contained a similar amount of cytochrome c550 to that observed in the control strain. These results indicate that the mutation R305S in CP43 prevents the strong association of cytochrome c550 with the PSII core complex. We hypothesize that this residue is involved in the formation of the binding domain for the cytochrome. 相似文献
33.
Masoud Zamani Esteki Eftychia Dimitriadou Ligia Mateiu Cindy Melotte Niels Van der Aa Parveen Kumar Rakhi Das Koen Theunis Jiqiu Cheng Eric Legius Yves Moreau Sophie Debrock Thomas D’Hooghe Pieter Verdyck Martine De Rycke Karen Sermon Joris R. Vermeesch Thierry Voet 《American journal of human genetics》2015,96(6):894-912
Methods for haplotyping and DNA copy-number typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a consequence, haplotyping methods suffer from error-prone discrete SNP genotypes (AA, AB, BB) and DNA copy-number profiling remains difficult because true DNA copy-number aberrations have to be discriminated from WGA artifacts. Here, we developed a single-cell genome analysis method that reconstructs genome-wide haplotype architectures as well as the copy-number and segregational origin of those haplotypes by employing phased parental genotypes and deciphering WGA-distorted SNP B-allele fractions via a process we coin haplarithmisis. We demonstrate that the method can be applied as a generic method for preimplantation genetic diagnosis on single cells biopsied from human embryos, enabling diagnosis of disease alleles genome wide as well as numerical and structural chromosomal anomalies. Moreover, meiotic segregation errors can be distinguished from mitotic ones. 相似文献
34.
Plante E Gaudreau M Lachance D Drolet MC Roussel E Gauthier C Lapointe E Arsenault M Couet J 《Canadian journal of physiology and pharmacology》2004,82(3):191-199
The efficacy of angiotensin-converting enzyme inhibitors (ACEIs) in the treatment of chronic aortic regurgitation (AR) is not well established and remains controversial. The mechanisms by which ACEIs may protect against left-ventricular (LV) volume overload are not well understood, and clinical trials performed until now have yielded conflicting results. This study was therefore performed to assess the effectiveness of two different doses of the ACEI captopril in a rat model of chronic AR. We compared the effects of a 6-month low-dose (LD) (25 mg/kg) or higher dose (HD) (75 mg/kg) treatment with captopril on LV function and hypertrophy in Wistar rats with severe AR. Untreated animals developed LV eccentric hypertrophy and systolic dysfunction. LD treatment did not prevent hypertrophy and provided modest protection against systolic dysfunction. HD treatment preserved LV systolic function and dimensions and tended to slow hypertrophy. The cardiac index remained high and similar among all AR groups, treated or not. Tissue renin-angiotensin system (RAS) analysis revealed that ACE activity was increased in the LVs of AR animals and that only HD treatment significantly decreased angiotensin II receptor mRNA levels. Fibronectin expression was increased in the LV or AR animals, but HD treatment almost completely reversed this increase. The ACE inhibitor captopril was effective at high doses in this model of severe AR. These effects might be related to the modulation of tissue RAS and the control of fibrosis. 相似文献
35.
Mass spectrometry was used to identify novel proteins associated with the human 17S U2 snRNP and one of its stable subunits, SF3b. Several additional proteins were identified, demonstrating that 17S U2 snRNPs are significantly more complex than previously thought. Two of the newly identified proteins, namely the DEAD-box proteins SF3b125 and hPrp5 (a homologue of Saccharomyces cerevisiae Prp5p) were characterized further. Immunodepletion experiments with HeLa nuclear extract indicated that hPrp5p plays an important role in pre-mRNA splicing, acting during or prior to prespliceosome assembly. The SF3b-associated protein SF3b125 dissociates at the time of 17S U2 formation, raising the interesting possibility that it might facilitate the assembly of the 17S U2 snRNP. Finally, immunofluorescence/FISH studies revealed a differential subnuclear distribution of U2 snRNA, hPrp5p and SF3b125, which were enriched in Cajal bodies, versus SF3b155 and SF3a120, which were not; a model for 17S U2 snRNP assembly based on these findings is presented. Taken together, these studies provide new insight into the composition of the 17S U2 snRNP and the potential function of several of its proteins. 相似文献
36.
Cindy E. Morris Franz Conen J. Alex Huffman Vaughan Phillips Ulrich Pöschl David C. Sands 《Global Change Biology》2014,20(2):341-351
Landscapes influence precipitation via the water vapor and energy fluxes they generate. Biologically active landscapes also generate aerosols containing microorganisms, some being capable of catalyzing ice formation and crystal growth in clouds at temperatures near 0 °C. The resulting precipitation is beneficial for the growth of plants and microorganisms. Mounting evidence from observations and numerical simulations support the plausibility of a bioprecipitation feedback cycle involving vegetated landscapes and the microorganisms they host. Furthermore, the evolutionary history of ice nucleation‐active bacteria such as Pseudomonas syringae supports that they have been part of this process on geological time scales since the emergence of land plants. Elucidation of bioprecipitation feedbacks involving landscapes and their microflora could contribute to appraising the impact that modified landscapes have on regional weather and biodiversity, and to avoiding inadvertent, negative consequences of landscape management. 相似文献
37.
Sima Babayeva Brittany Rocque Lamine Aoudjit Yulia Zilber Jane Li Cindy Baldwin Hiroshi Kawachi Tomoko Takano Elena Torban 《The Journal of biological chemistry》2013,288(33):24035-24048
The noncanonical Wnt/planar cell polarity (PCP) pathway controls a variety of cell behaviors such as polarized protrusive cell activity, directional cell movement, and oriented cell division and is crucial for the normal development of many tissues. Mutations in the PCP genes cause malformation in multiple organs. Recently, the PCP pathway was shown to control endocytosis of PCP and non-PCP proteins necessary for cell shape remodeling and formation of specific junctional protein complexes. During formation of the renal glomerulus, the glomerular capillary becomes enveloped by highly specialized epithelial cells, podocytes, that display unique architecture and are connected via specialized cell-cell junctions (slit diaphragms) that restrict passage of protein into the urine; podocyte differentiation requires active remodeling of cytoskeleton and junctional protein complexes. We report here that in cultured human podocytes, activation of the PCP pathway significantly stimulates endocytosis of the core slit diaphragm protein, nephrin, via a clathrin/β-arrestin-dependent endocytic route. In contrast, depletion of the PCP protein Vangl2 leads to an increase of nephrin at the cell surface; loss of Vangl2 functions in Looptail mice results in disturbed glomerular maturation. We propose that the PCP pathway contributes to podocyte development by regulating nephrin turnover during junctional remodeling as the cells differentiate. 相似文献
38.
Salicylic acid (SA) is an important signal involved in the activation of plant defence responses against abiotic and biotic stress. SA may derive from the phenylpropanoid pathway or via isochorismate synthase as demonstrated in Nicotiana benthamiana, tomato and Arabidopsis thaliana. The phenylpropanoid pathway as well as isochorismate synthase are localized in the chloroplasts but it remains unknown if the end product SA is in the same organelle. We have studied the localization of SA in A. thaliana using the salicylate hydroxylase (NahG) gene expressed with a chloroplast targeting sequence. Plants expressing NahG in the chloroplasts are unable to accumulate SA induced after pathogen or UV exposure. Our data infer that SA is initially located in the chloroplasts. 相似文献
39.
Torsten Schubert Stephan H. von Reuß Cindy Kunze Christian Paetz Stefan Kruse Peggy Brand-Schön Anita Mac Nelly Jörg Nüske Gabriele Diekert 《Microbial biotechnology》2019,12(2):346-359
Cobamides (Cbas) are essential cofactors of reductive dehalogenases (RDases) in organohalide-respiring bacteria (OHRB). Changes in the Cba structure can influence RDase function. Here, we report on the cofactor versatility or selectivity of Desulfitobacterium RDases produced either in the native organism or heterologously. The susceptibility of Desulfitobacterium hafniense strain DCB-2 to guided Cba biosynthesis (i.e. incorporation of exogenous Cba lower ligand base precursors) was analysed. Exogenous benzimidazoles, azabenzimidazoles and 4,5-dimethylimidazole were incorporated by the organism into Cbas. When the type of Cba changed, no effect on the turnover rate of the 3-chloro-4-hydroxy-phenylacetate-converting enzyme RdhA6 and the 3,5-dichlorophenol-dehalogenating enzyme RdhA3 was observed. The impact of the amendment of Cba lower ligand precursors on RDase function was also investigated in Shimwellia blattae, the Cba producer used for the heterologous production of Desulfitobacterium RDases. The recombinant tetrachloroethene RDase (PceAY51) appeared to be non-selective towards different Cbas. However, the functional production of the 1,2-dichloroethane-dihaloeliminating enzyme (DcaA) of Desulfitobacterium dichloroeliminans was completely prevented in cells producing 5,6-dimethylbenzimidazolyl-Cba, but substantially enhanced in cells that incorporated 5-methoxybenzimidazole into the Cba cofactor. The results of the study indicate the utilization of a range of different Cbas by Desulfitobacterium RDases with selected representatives apparently preferring distinct Cbas. 相似文献
40.
Effects of canola and high‐oleic‐acid canola oils on abdominal fat mass in individuals with central obesity 下载免费PDF全文