首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   4篇
  142篇
  2023年   3篇
  2022年   7篇
  2021年   5篇
  2020年   9篇
  2019年   1篇
  2018年   2篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   12篇
  2013年   14篇
  2012年   14篇
  2011年   15篇
  2010年   5篇
  2009年   4篇
  2008年   8篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1994年   1篇
  1992年   1篇
  1989年   2篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
91.
We have partially purified and characterized two new thermostable exo-α-1,4-glucosidases (E.C.3.2.1.20) isolated from Geobacillus sp. A333 and thermophilic bacterium A343 strains. A333 α-glucosidase showed optimum activity at 60°C, pH 6.8 and had a value of 1.38 K m for the pNPG substrate, whereas these results were found to be 65°C, 7.0 and 0.85, respectively for A343 enzyme. Specificity for 20 different substrates and thin layer chromatography studies demonstrated that the A333 enzyme had high transglycosylation activity, and A343 had wide substrate specificity. The substrate specificity of A333 α-glucosidase was determined as maltose, dextrin, turanose, maltotriose, maltopentaose, meltotetraose, maltohexaose and phenyl-α-d-glycopyranoside. On the other hand, the A343 α-glucosidase mostly hydrolyzed dextrin, turanose, maltose, phenyl-α-d-glucopyranoside, maltotriose, maltotetraose, maltopentaose, isomaltose, saccharose and kojibiose by acting α-1,2, α-1,3, α-1,4 and α-1,6 bonds of these substrates. The relative activites of A333 and A343 enzymes were determined to be 83 and 92% when incubated at 60°C for 5 h whereas, the pH of 50% inactivation at 60°C for 15 h were determined to be pH 4.5/10.0 and pH 5.0/10.0, respectively. In addition, the results not only showed that both of the α-glucosidases were stable in a wide range of pH and temperatures, but were also found to be resistant to most of the denaturing agents, inhibitors and metal ions tested. With this study, thermostable exo-α-1,4-glucosidases produced by two new thermophilic strains were characterized as having biotechnological potential in transglycosylation reactions and starch hydrolysis processes.  相似文献   
92.
Aminoguanidine is an inhibitor of nitric oxide synthase (NOS), with high selectivity for the inducible isoform (iNOS). In addition to being an inhibitor of NOS, aminoguanidine also exhibits antioxidant activity. Recent studies suggest that aminoguanidine reduces ischaemia-reperfusion (I/R)-induced damage. However, the role of aminoguanidine, in renal injury associated with I/R remains unknown. This study was designed to investigate the effects of aminoguanidine on renal I/R injury. There were three groups of eight rats each. I/R was induced by occlusion of the left renal vessels for 60 min, followed by 24 h reperfusion in rats. Malondialdehyde (MDA) levels, a stable metabolite of the free radical-mediated lipid peroxidation cascade, were found to be significantly higher in the I/R group (30.3 +/- 0.1 nmol g(-1) tissue) than in the control group (10 +/- 0.05 nmol g(-1)). Aminoguanidine (100 mg kg(-1)) administration to rats significantly reduced the MDA values. We also demonstrated that I/R leads to structural change but aminoguanidine did not reverse this change. Aminoguanidine, according to the biochemical finding is protective but histopathological findings did not reveal protection against I/R injury in kidney. The effects of aminoguanidine on I/R-induced damage remain a subject for future investigations.  相似文献   
93.
X-ray radiation is detrimental to human cells and may lead to development of life-threatening diseases. Cigarette paper and cigarette smoke contain toxic elements, whereas vitamins C and E (VCE) may have regulator effects on the elements. We investigated effects of VCE administration on X-ray-induced element changes in blood of smoker and nonsmoker X-ray technicians. Twenty technicians and 30 healthy age-matched control subjects were used in the study. Ten of the X-ray technicians and 15 of the control were smokers. Blood serum samples were taken from the control. Oral vitamins C (500 mg) and E (150 mg) were supplemented daily to the smoker and nonsmoker X-ray technicians for 5 weeks. Serum samples were taken from the X-ray technicians before and after 5 weeks. Copper, zinc, selenium, aluminum, iron, magnesium, and calcium levels were investigated in control and X-ray technicians, both smokers and nonsmokers. Copper, zinc, and selenium levels were lower in the total X-ray group and smoker X-ray group than in control and nonsmoker X-ray group, although iron, magnesium, and calcium levels were higher in X-ray group than in control. The copper, zinc, selenium, and aluminum levels were higher in the VCE treatment group than those in X-ray group, although magnesium and calcium levels were decreased by the treatment. The serum zinc, copper, selenium, and magnesium levels were lower in smoker control group when compared to nonsmoker control group. The serum zinc levels were lower in smoker X-ray group than nonsmoker X-ray group, although iron level was higher in smoker X-ray group than in nonsmoker X-ray group. VCE prevents the smoke and X-ray-induced selenium, zinc, magnesium, and copper decrease to strengthen the antioxidant trace element levels in the serum of the technicians.  相似文献   
94.
Acute starvation attenuates the fever response to pathogens in several mammalian species. The underlying mechanisms responsible for this effect are not fully understood but may involve a compromised immune and/or thermoregulatory function, both of which are prerequisites for fever generation. In the present study, we addressed whether the impaired innate immune response contributes to the reported attenuation of the fever response in fasted rats during LPS-induced inflammation. Animals fasted for 48 h exhibited a significant and progressive hypothermia prior to drug treatment. An intraperitoneal injection of LPS (100 microg/kg) resulted in a significantly attenuated fever in the fasted animals compared with the fed counterparts. This attenuation was accompanied by the diminution in the concentration of some [TNF and IL-1 receptor antagonist (RA)] but not all (IL-1beta and IL-6) of the plasma cytokines normally elevated in association with the fever response. Nevertheless, fasting had no effect on the LPS-induced inflammatory responses at the level of the brain, as assessed by mRNA expressions of inhibitory factor(I)-kappaB, suppressor of cytokine signaling (SOCS3), IL-1beta, cyclooxygenase (COX)-2, and microsomal PGE synthase (mPGES)-1 in the hypothalamus, as well as by PGE2 elevations in the cerebrospinal fluid. In contrast, fasting significantly attenuated the fever response to central PGE2 injection. These results show that fasting does not alter the febrigenic signaling from the periphery to the brain important for central PGE2 synthesis but does affect thermoregulatory mechanisms downstream of and/or independent of central PGE2 action.  相似文献   
95.
Cereal straws constitute a considerable source of biomass that can be used for bioenergy applications. Its composition is crucial for the energy value in biological or thermochemical conversion processes. Therefore, this study aimed at (i) exploring the global diversity in the composition of barley (Hordeum vulgare L.) straw; (ii) testing the effect of drought on straw composition; (iii) correlating compositional traits with energy value; and (iv) identifying loci associated with straw composition through genomewide association study (GWAS). A population of 179 barley accessions was grown in control and drought conditions, and straw was analyzed for thioglycolic acid lignin (TGAL), total phenolics (TP), carbon, crude protein (CP), C/N ratio, and ash. Substantial variability was observed in all traits. Moreover, drought treatment affected all traits leading to significant decreases in carbon, CP, ash, TGAL and TP concentrations, and a significant increase in C/N ratio. In vitro incubations in rumen fluid were used to estimate the energy value in biological energy conversion, while calorimetry was used to estimate the energy yield in thermochemical energy conversion. Thioglycolic acid lignin was singled out as the most influential trait determining energy value, as it was negatively correlated with the digestibility of organic matter and metabolizable energy in in vitro incubations, but positively correlated with gross energy measured by calorimetry. The GWAS yielded four loci significantly associated with TGAL irrespective of plant water status, which explained between 22.5% and 38.7% of the phenotypic variation. In addition, three loci significantly affected the response of TGAL to plant water status, and explained between 11.2% and 16.6% of the phenotypic variation. These loci contained plausible candidate genes that could be associated with lignin biosynthesis based on their annotations. In conclusion, this study illustrated great potential for the molecular breeding of barley varieties with enhanced straw quality for bioenergy applications.  相似文献   
96.
97.
Objective: To evaluate a new scanning electronic microscopic (EM) method for assessing fat cell sizes and compare fat cell size distribution in human adipose tissue from different fat depots before and after weight loss. Research Methods and Procedures: Identical human fat tissue biopsies were separated into two fractions: one used to prepare a fat cell suspension by collagenase digestion followed by photomicrography (collagenase method) and the other fixed in formalin for EM analysis. The EM method was evaluated further by determining fat cell sizes from lean and ob/ob mice. Finally, the EM method was used to assess fat cell sizes in biopsies of different human depots from before and after weight loss. Results: Fat cell size distributions measured by the two methods were not identical, but differences were generally small. The EM method reproduced the well‐documented fat cell size difference between lean and ob/ob mice. Large variation was detected in fat cell distributions among three depots in humans. Weight loss reduced fat cell sizes in subjects with large baseline fat cells but had no effect in subjects with small baseline fat cell sizes. Discussion: Our results suggest that the EM method may be a useful alternative for fat cell size analysis of clinical samples.  相似文献   
98.
99.
We previously demonstrated that black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. To investigate potential mechanisms of this effect, we examined plasma catechins and systemic markers of oxidation, inflammation, and antioxidant protection from 66 subjects enrolled in that study. We collected samples at baseline, 2 h after 450 ml of black tea (acute), after 4 weeks of 900 ml of black tea per day (chronic), and after acute and chronic consumption of water. Total catechins increased 33% after acute tea (P < 0.05) and 29% after chronic tea (P < 0.05). Of individual catechins, plasma epicatechin gallate (ECG) concentration significantly increased with acute tea consumption, and plasma epicatechin (EC) increased with chronic tea consumption. Tea consumption did not improve plasma antioxidant capacity and did not reduce urinary 8-hydroxy-2'-deoxyguanosine, or urinary 8-isoprostane levels. Changes in catechin levels did not correlate with changes in endothelial function, plasma markers of oxidative stress, or C-reactive protein. In contrast, endothelial function at baseline correlated with dietary flavonoid intake (beta = 0.32, P = 0.02) and with baseline plasma EC concentration after adjusting for confounding variables (beta = 0.39, P = 0.03). These findings suggest that the benefits of black tea consumption on endothelial function may not be attributable to tea catechins or a systemic antioxidant or anti-inflammatory effect. Chronic dietary flavonoid status appears to relate to endothelial function, possibly suggesting that other flavonoids or polyphenolic components of tea favorably influence vascular health and risk for cardiovascular disease.  相似文献   
100.
Endothelial membrane-bound thrombomodulin is a high affinity receptor for thrombin to inhibit coagulation. We previously demonstrated that the thrombin-thrombomodulin complex restrains cell proliferation mediated through protease-activated receptor (PAR)-1. We have now tested the hypothesis that thrombomodulin transduces a signal to activate the endothelial nitric-oxide synthase (NOS3) and to modulate G protein-coupled receptor signaling. Cultured human umbilical vein endothelial cells were stimulated with thrombin or a mutant of thrombin that binds to thrombomodulin and has no catalytic activity on PAR-1. Thrombin and its mutant dose dependently activated NO release at cell surface. Pretreatment with anti-thrombomodulin antibody suppressed NO response to the mutant and to low thrombin concentration and reduced by half response to high concentration. Thrombin receptor-activating peptide that only activates PAR-1 and high thrombin concentration induced marked biphasic Ca2+ signals with rapid phosphorylation of PLC(beta3) and NOS3 at both serine 1177 and threonine 495. The mutant thrombin evoked a Ca2+ spark and progressive phosphorylation of Src family kinases at tyrosine 416 and NOS3 only at threonine 495. It activated rapid phosphatidylinositol-3 kinase-dependent NO synthesis and phosphorylation of epidermal growth factor receptor and calmodulin kinase II. Complete epidermal growth factor receptor inhibition only partly reduced the activation of phospholipase Cgamma1 and NOS3. Prestimulation of thrombomodulin did not affect NO release but reduced Ca2+ responses to thrombin and histamine, suggesting cross-talks between thrombomodulin and G protein-coupled receptors. This is the first demonstration of an outside-in signal mediated by the cell surface thrombomodulin receptor to activate NOS3 through tyrosine kinase-dependent pathway. This signaling may contribute to thrombomodulin function in thrombosis, inflammation, and atherosclerosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号