首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   4篇
  2023年   3篇
  2022年   6篇
  2021年   5篇
  2020年   9篇
  2019年   1篇
  2018年   2篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   12篇
  2013年   14篇
  2012年   14篇
  2011年   15篇
  2010年   5篇
  2009年   4篇
  2008年   8篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1994年   1篇
  1992年   1篇
  1989年   2篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
131.
Hippocalcin is a neuronal calcium sensor protein previously implicated in regulating neuronal viability and plasticity. Hippocalcin is the most highly expressed neuronal calcium sensor in the medium spiny striatal output neurons that degenerate selectively in Huntington's disease (HD). We have previously shown that decreased hippocalcin expression occurs in parallel with the onset of disease phenotype in mouse models of HD. Here we show by in situ hybridization histochemistry that hippocalcin RNA is also diminished by 63% in human HD brain. These findings lead us to hypothesize that diminished hippocalcin expression might contribute to striatal neurodegeneration in HD. We tested this hypothesis by assessing whether restoration of hippocalcin expression would decrease striatal neurodegeneration in cellular models of HD comprising primary striatal neurons exposed to mutant huntingtin, the mitochondrial toxin 3-nitropropionic acid or an excitotoxic concentration of glutamate. Counter to our hypothesis, hippocalcin expression did not improve the survival of striatal neurons under these conditions. Likewise, expression of hippocalcin together with interactor proteins including the neuronal apoptosis inhibitory protein did not increase the survival of striatal cells in cellular models of HD. These results indicate that diminished hippocalcin expression does not contribute to HD-related neurodegeneration.  相似文献   
132.
The severe‐acute‐respiratory‐syndrome‐coronavirus‐2 (SARS‐CoV‐2) is the causative agent of COVID‐19, but host cell factors contributing to COVID‐19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS‐CoV‐2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID‐19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS‐CoV‐2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease‐targeted inhibitors severely impair lung cell infection by the SARS‐CoV‐2 variants of concern alpha, beta, delta, and omicron and also reduce SARS‐CoV‐2 infection of primary human lung cells in a TMPRSS2 protease‐independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development.  相似文献   
133.
134.
Plasmonics - The past two decades have witnessed the explosion of activities in the field of surface enhanced Raman spectroscopy (SERS). SERS platforms employ nano-structures that excite plasmonic...  相似文献   
135.
Engineered living materials (ELMs) have broad applications for enabling on-demand bioproduction of compounds ranging from small molecules to large proteins. However, most formulations and reports lack the capacity for storage beyond a few months. In this study, we develop an optimized procedure to maximize stress resilience of yeast-laden ELMs through the use of desiccant storage and 10% trehalose incubation before lyophilization. This approach led to over 1-year room temperature storage stability across a range of strain genotypes. In particular, we highlight the superiority of exogenously added trehalose over endogenous, engineered production in yielding robust preservation resilience that is independent of cell state. This simple, effective protocol enables sufficient accumulation of intracellular trehalose over a short period of contact time across a range of strain backgrounds without requiring the overexpression of a trehalose importer. A variety of microscopic analysis including µ-CT and confocal microscopy indicate that cells form spherical colonies within F127-BUM ELMs that have variable viability upon storage. The robustness of the overall procedure developed here highlights the potential for widespread deployment to enable on-demand, cold-chain independent bioproduction.  相似文献   
136.
Two different α‐glucosidase‐producing thermophilic E134 strains were isolated from a hot spring in Kozakli, Turkey. Based on the phenotypic, phylogenetic and chemotaxonomic evidence, the strain was proposed to be a species of G. toebii. Its thermostable exo‐α‐1,4‐glucosidases also were characterized and compared, which were purified from the intracellular and extracellular fractions with estimated molecular weights of 65 and 45 kDa. The intracellular and extracellular α‐glucosidases showed optimal activity at 65 °C, pH 7·0, and at 70 °C, pH 6·8, with 3·65 and 0·83 Km values for the pNPG substrate, respectively. Both enzymes remained active over temperature and pH ranges of 35–70 °C and 4·5–11·0. They retained 82 and 84% of their activities when incubated at 60 °C for 5 h. Their relative activities were 45–75% and 45–60% at pH 4·5 and 11·0 values for 15 h at 35 °C. They could hydrolyse the α‐1,3 and α‐1,4 bonds on substrates in addition to a high transglycosylation activity, although the intracellular enzyme had more affinity to the substrates both in hydrolysis and transglycosylation reactions. Furthermore, although sodium dodecyl sulfate behaved as an activator for both of them at 60 °C, urea and ethanol only increased the activity of the extracellular α‐glucosidase. By this study, G. toebii E134 strain was introduced, which might have a potential in biotechnological processes when the conformational stability of its enzymes to heat, pH and denaturants were considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
137.
138.
BackgroundThe epoxyeicosatrienoic acids (EETs) have antihypertensive, anti-inflammatory, and organ protective properties and their circulation levels are related to hypertension, diabetes mellitus, cardiovascular diseases, and preeclampsia. Soluble epoxide hydrolase (sEH) catalyses the degradation of EETs to less biologically active dihydroxyeicosatrienoic acids. Here, we sequenced the promoter region of EPHX2 to investigate the association between promoter sequence alterations that we thought to affect the expression levels of the enzyme and preeclampsia (PE).MethodsNucleotide sequencing of the promoter region of the EPHX2, spanning from position -671 to +30, was performed on 100 pregnant women with PE and, 20 or more weeks pregnant normotensive, healthy women (n=100).ResultsPregnant women who carry rs4149235, rs4149232, rs73227309, and rs62504268 polymorphisms have 4.4, 2.4, 2.3, and 2.8 times significantly increased risk of PE, respectively. CCGG (OR: 3.11; 95% CI: 1.12-8.62) and CCCA (OR: 0.45; 95% CI: 0.36-0.55) haplotypes were associated with an increased and decreased risk of PE, respectively.ConclusionsFour SNPs (rs4149232, rs4149235, rs73227309, and rs62504268) in the promoter region of the EPHX2, and CCGG and CCCA haplotypes of these 4 SNPs were significantly associated with PE. These SNPs in the promoter region may affect sEH expression and thus enzyme activity and may play a role in PE pathogenesis by causing individual differences in EET levels. However, future studies are needed to confirm our findings and examine the effect of these SNPs on the sEH expression and/or enzyme activity.  相似文献   
139.
The family Poxviridae is divided into two subfamilies, the Chordopoxvirinae of vertebrates and the Entomopoxvirinae of invertebrates. The Amsacta moorei entomopoxvirus (AMEV, Entomopoxvirinae) has the potential to be used in gene therapy, as an expression vector, and as a biopesticide. It was suggested that AMV248 protein is a putative glycosyltransferase (GT) but was also shown to be an attachment protein to host receptors. GTs encoded by some other viruses catalyse the binding of sugars molecules to growth hormones of the host insects rendering the hormones inactive. Consequently, larval development is arrested and frequently results in larval mortality. In this study, AMV248 protein was shown to be a GT and the purified enzyme catalysed the production of uridine diphosphate (UDP) from the substrates UDP-glucose and UDP-N-acetylglucosamine. This AMEV enzyme may behave much like the ecdysteroid UDP-glucosyltransferase of baculoviruses. Various concentrations of the GT enzyme were tested for its insecticidal activity against gypsy moth Lymantria dispar (Linnaeus, 1758) (Lepidoptera: Lymantriidae), lackey moth Malacosoma neustria (Linnaeus, 1758) (Lepidoptera: Lasiocampidae), cotton bollworm Helicoverpa armigera (Hübner, 1808) (Lepidoptera: Noctuidae) and the greater wax moth Galleria mellonella (Linnaeus, 1758) (Lepidoptera: Pyralidae) larvae. It had varying deleterious effects on all test larvae but L. dispar was the most sensitive to the enzyme. While this enzyme exhibits properties with potential to be developed as an insecticide in biocontrol strategies, investigations are needed to ascertain its value in pest management.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号