全文获取类型
收费全文 | 218篇 |
免费 | 53篇 |
国内免费 | 1篇 |
专业分类
272篇 |
出版年
2024年 | 1篇 |
2023年 | 1篇 |
2022年 | 3篇 |
2021年 | 7篇 |
2020年 | 5篇 |
2019年 | 1篇 |
2018年 | 4篇 |
2017年 | 4篇 |
2016年 | 8篇 |
2015年 | 10篇 |
2014年 | 8篇 |
2013年 | 8篇 |
2012年 | 13篇 |
2011年 | 13篇 |
2010年 | 10篇 |
2009年 | 7篇 |
2008年 | 7篇 |
2007年 | 10篇 |
2006年 | 7篇 |
2005年 | 5篇 |
2004年 | 10篇 |
2003年 | 7篇 |
2002年 | 6篇 |
2001年 | 2篇 |
2000年 | 4篇 |
1999年 | 6篇 |
1998年 | 1篇 |
1997年 | 4篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 10篇 |
1991年 | 11篇 |
1990年 | 14篇 |
1989年 | 10篇 |
1988年 | 3篇 |
1987年 | 12篇 |
1986年 | 6篇 |
1985年 | 9篇 |
1984年 | 5篇 |
1983年 | 3篇 |
1982年 | 4篇 |
1981年 | 3篇 |
1980年 | 1篇 |
1979年 | 3篇 |
1978年 | 1篇 |
排序方式: 共有272条查询结果,搜索用时 0 毫秒
21.
The ATR-Chk1 DNA damage checkpoint pathway is a critical regulator of the cellular response to DNA damage and replication stress in human cells. The variety of environmental, chemotherapeutic, and carcinogenic agents that activate this signal transduction pathway do so primarily through the formation of bulky adducts in DNA and subsequent effects on DNA replication fork progression. Because there are many protein-protein and protein-DNA interactions proposed to be involved in activation and/or maintenance of ATR-Chk1 signaling in vivo, we systematically analyzed the association of a number of ATR-Chk1 pathway proteins with relevant checkpoint-inducing DNA structures in vitro. These DNA substrates included single-stranded DNA, branched DNA, and bulky adduct-containing DNA. We found that many checkpoint proteins show a preference for single-stranded, branched, and bulky adduct-containing DNA in comparison to undamaged, double-stranded DNA. We additionally found that the association of checkpoint proteins with bulky DNA damage relative to undamaged DNA was strongly influenced by the ionic strength of the binding reaction. Interestingly, among the checkpoint proteins analyzed the checkpoint mediator proteins Tipin and Claspin showed the greatest differential affinity for checkpoint-inducing DNA structures. We conclude that the association and accumulation of multiple checkpoint proteins with DNA structures indicative of DNA damage and replication stress likely contribute to optimal ATR-Chk1 DNA damage checkpoint responses. 相似文献
22.
Escherichia coli DNA photolyase exhibits the same turnover number (3.4 min-1) for the repair of dimers in oligothymidylates [oligo(dT)n] containing 4-18 thymine residues. This rate is identical with that observed with polythymidylate and with native DNA. The enzyme exhibits a similar high affinity with oligomers containing seven or more thymine residues. A decrease in affinity is detectable with oligo(dT)n when n = 4-6. The enzyme is active with oligo(dT)3, but no evidence for saturation was obtained at dimer concentrations up to 15 microM where the observed repair rate is 43% of the turnover number observed with the higher homologues. Nearly quantitative (90-100%) repair is observed with oligo(dT)n when n is greater than or equal to 9. Photolyase can repair internal dimers and dimers at a 5' end where the terminal ribose is phosphorylated but not at unphosphorylated 5' or 3' ends. The latter can explain a progressive decrease in the extent of repair observed with short-chain oligomers. The observed specificity can also explain why the enzyme is inactive with oligo(dT)2 [p(dT)2] since the only dimer possible in oligo(dT)2 involves an unphosphorylated 3' end. That the enzyme can repair dimers in short-chain, single-stranded analogues for DNA suggests that in catalysis with DNA recognition of the dimer itself is important as opposed to recognition of the deformation in DNA structure produced by the dimer. Dimer repair with oligo(dT)n is detected by the increase in absorbance at 260 nm, a feature which is used as the basis for a rapid spectrophotometric assay with a lower detection limit around 150 pmol of dimer repaired. 相似文献
23.
Circadian rhythms are the endogenous oscillations, occurring with a periodicity of approximately twenty-four hours, in the biochemical and behavioral functions of organisms. In mammals, the phase and period of the rhythm are synchronized to the daily light-dark cycle by light input through the eye. Certain retinal degenerative diseases affecting the photoreceptor cells, both rods and cones, in the outer retina reveal that classical opsins (i.e., rhodopsin and color opsins located in these cells) are essential for vision, but are not required for circadian photoreception. The mammalian cryptochromes and melanopsin (and possibly other opsin family pigments) have been proposed as circadian photoreceptor pigments that exist in the inner retina. Genetic analysis indicates that the cryptochromes, which contain flavin and folate as the light-absorbing cofactors, are the primary circadian photoreceptors. The classical photoreceptors in the outer retina, and melanopsin or other minor opsins in the inner retina, may perform redundant functions in circadian rhythmicity. 相似文献
24.
Action mechanism of Escherichia coli DNA photolyase. I. Formation of the enzyme-substrate complex 总被引:4,自引:0,他引:4
G B Sancar F W Smith R Reid G Payne M Levy A Sancar 《The Journal of biological chemistry》1987,262(1):478-485
Escherichia coli DNA photolyase (photoreactivating enzyme) is a flavoprotein. The enzyme binds to DNA containing pyrimidine dimers in a light-independent step and, upon illumination with 300-600 nm radiation, catalyzes the photosensitized cleavage of the cyclobutane ring thus restoring the integrity of the DNA. We have studied the binding reaction using the techniques of nitrocellulose filter binding and flash photolysis. The enzyme binds to dimer-containing DNA with an association rate constant k1 estimated by two different methods to be 1.4 X 10(6) to 4.2 X 10(6) M-1 S-1. The dissociation of the enzyme from dimer-containing DNA displays biphasic kinetics; for the rapidly dissociating class of complexes k2 = 2-3 X 10(-2) S-1, while for the more slowly dissociating class k2 = 1.3 X 10(-3) to 6 X 10(-4) S-1. The equilibrium association constant KA, as determined by the nitrocellulose filter binding assay and the flash photolysis assay, was 4.7 X 10(7) to 6 X 10(7) M-1, in reasonable agreement with the values predicted from k1 and k2. From the dependence of the association constant on ionic strength we conclude that the enzyme contacts no more than two phosphodiester bonds upon binding; this strongly suggests that the pyrimidine dimer is the main structural determinant of specific photolyase-DNA interaction and that nonspecific ionic interactions do not contribute significantly to substrate binding. 相似文献
25.
Nucleotide excision repair is a general repair system that eliminates many dissimilar lesions from DNA. In an effort to understand substrate determinants of this repair system, we tested DNAs with minor backbone modifications using the ultrasensitive excision assay. We found that a phosphorothioate and a methylphosphonate were excised with low efficiency. Surprisingly, we also found that fragments of 23-28 nucleotides and of 12-13 nucleotides characteristic of human and Escherichia coli excision repair, respectively, were removed from undamaged DNA at a significant rate. Considering the relative abundance of undamaged DNA in comparison to damaged DNA in the course of the life of an organism, we conclude that, in general, excision from and resynthesis of undamaged DNA may exceed the excision and resynthesis caused by DNA damage. As resynthesis is invariably associated with mutations, we propose that gratuitous repair may be an important source of spontaneous mutations. 相似文献
26.
27.
Effect of base, pentose, and phosphodiester backbone structures on binding and repair of pyrimidine dimers by Escherichia coli DNA photolyase. 总被引:6,自引:0,他引:6
Photolyases reverse the effects of UV light on cells by converting cyclobutane dipyrimidine photoproducts (pyrimidine dimers, Pyr mean value of Pyr) into pyrimidine monomers in a light-dependent reaction. Previous work has suggested that, based on substrate preference, there are two classes of photolyase: DNA photolyase as exemplified by the Escherichia coli enzyme, and RNA photolyases found in plants such as Nicotiana tabacum and Phaseolus vulgaris. In experiments aimed at identifying substrate determinants, including the pentose ring, for binding and catalysis by E. coli DNA photolyase we tested several Pyr mean value of Pyr. We found that the enzyme has relative affinities for photodimers of T mean value of T greater than or equal to U mean value of T greater than U mean value of U much greater than C mean value of C and that the E-FADH2 form of the enzyme repairs these dimers at 366 nm with absolute quantum yields of 0.9 (T mean value of T), 0.8 (U mean value of T), 0.6 (U mean value of U), and 0.05 (C mean value of C). The enzyme also repairs an isolated thymine dimer and the synthetic substrate, 1,1'-trimethylene-bis (thymine) cyclobutane dimer. Unexpectedly, we found that this enzyme, previously thought to be specific for DNA, repairs uracil cyclobutane dimers in poly(rU). The affinity of photolyase for a uracil dimer in RNA is about 10(4)-fold lower than that for a U mean value of U in DNA; however, once bound, the enzyme repairs the photodimer with the same quantum yield whether the dimer is in ribonucleoside or deoxyribonucleoside form. 相似文献
28.
Initiation of DNA interstrand cross-link repair in humans: the nucleotide excision repair system makes dual incisions 5' to the cross-linked base and removes a 22- to 28-nucleotide-long damage-free strand. 总被引:3,自引:0,他引:3 下载免费PDF全文
Most DNA repair mechanisms rely on the redundant information inherent to the duplex to remove damaged nucleotides and replace them with normal ones, using the complementary strand as a template. Interstrand cross-links pose a unique challenge to the DNA repair machinery because both strands are damaged. To study the repair of interstrand cross-links by mammalian cells, we tested the activities of cell extracts of wild-type or excision repair-defective rodent cell lines and of purified human excision nuclease on a duplex with a site-specific cross-link. We found that in contrast to monoadducts, which are removed by dual incisions bracketing the lesion, the cross-link causes dual incisions, both 5' to the cross-link in one of the two strands. The net result is the generation of a 22- to 28-nucleotide-long gap immediately 5' to the cross-link. This gap may act as a recombinogenic signal to initiate cross-link removal. 相似文献
29.
UvrA, UvrB, and UvrC initiate nucleotide excision repair by incising a damaged DNA strand on each side of the damaged nucleotide. This incision reaction is substoichiometric with regard to UvrB and UvrC, suggesting that both proteins remain bound following incision and do not "turn over." The addition of only helicase II to such reaction mixtures turns over UvrC; UvrB turnover requires the addition of helicase II, DNA polymerase I, and deoxynucleoside triphosphates. Column chromatography and psoralen photocross-linking experiments show that following incision, the damaged oligomer remains associated with the undamaged strand, UvrB, and UvrC in a post-incision complex. Helicase II releases the damaged oligomer and UvrC from this complex, making repair synthesis possible; DNase I footprinting experiments show that UvrB remains bound to the resulting gapped DNA until displaced by DNA polymerase I. The specific binding of UvrB to a psoralen adduct in DNA inhibits psoralen-mediated DNA-DNA cross-linking, yet promotes the formation of UrvB-psoralen-DNA cross-links. The discovery of psoralen-UvrB photocross-linking offers the potential of active-site labeling. 相似文献
30.
Mai Zahran Cigdem Sevim?Bayrak Shereef Elmetwaly Tamar Schlick 《Nucleic acids research》2015,43(19):9474-9488
To address many challenges in RNA structure/function prediction, the characterization of RNA''s modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. 相似文献