首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   14篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   10篇
  2015年   9篇
  2014年   10篇
  2013年   13篇
  2012年   21篇
  2011年   14篇
  2010年   9篇
  2009年   11篇
  2008年   14篇
  2007年   7篇
  2006年   5篇
  2005年   10篇
  2004年   9篇
  2003年   7篇
  2002年   11篇
  2001年   13篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   6篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   7篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有267条查询结果,搜索用时 15 毫秒
261.
262.
Elucidating the origin of life involves synthetic as well as analytical challenges. Herein, for the first time, we describe the use of gel electrophoresis and ultrafiltration to fractionate HCN polymers. Since the first prebiotic synthesis of adenine by Oró, HCN polymers have gained much interest in studies on the origins of life due to the identification of biomonomers and related compounds within them. Here, we demonstrate that macromolecular fractions with electrophoretic mobility can also be detected within HCN polymers. The migration of polymers under the influence of an electric field depends not only on their sizes (one‐dimensional electrophoresis) but also their different isoelectric points (two‐dimensional electrophoresis, 2‐DE). The same behaviour was observed for several macromolecular fractions detected in HCN polymers. Macromolecular fractions with apparent molecular weights as high as 250 kDa were detected by tricine‐SDS gel electrophoresis. Cationic macromolecular fractions with apparent molecular weights as high as 140 kDa were also detected by 2‐DE. The HCN polymers synthesized were fractionated by ultrafiltration. As a result, the molecular weight distributions of the macromolecular fractions detected in the HCN polymers directly depended on the synthetic conditions used to produce these polymers. The implications of these results for prebiotic chemistry will be discussed.  相似文献   
263.
J. FÁBREGAS, A. CID, E. MORALES, B. CORDERO AND A. OTERO. 1996. Changes in average cell volume, measured by flow cytometry, and cell organic content were studied in light/dark synchronized semi-continuous cultures of the marine microalga Phaeodactylum tricornutum . Cell volume and organic content both increased with nutrient concentration at all the renewal rates tested. Cell volume against renewal rate, at each nutrient concentration, followed a U-shaped curve with smallest cells at intermediate renewal rates. In contrast, cell organic content decreased continuously with increasing renewal rate. The variation in cell volume and organic content, related to culture conditions, should be taken into account if biochemical composition and productivity of microalgal cultures are assessed on the basis of cell counts.  相似文献   
264.
265.
266.
The detection of family relationships in genetic databases is of interest in various scientific disciplines such as genetic epidemiology, population and conservation genetics, forensic science, and genealogical research. Nowadays, screening genetic databases for related individuals forms an important aspect of standard quality control procedures. Relatedness research is usually based on an allele sharing analysis of identity by state (IBS) or identity by descent (IBD) alleles. Existing IBS/IBD methods mainly aim to identify first-degree relationships (parent–offspring or full siblings) and second degree (half-siblings, avuncular, or grandparent–grandchild) pairs. Little attention has been paid to the detection of in-between first and second-degree relationships such as three-quarter siblings (3/4S) who share fewer alleles than first-degree relationships but more alleles than second-degree relationships. With the progressively increasing sample sizes used in genetic research, it becomes more likely that such relationships are present in the database under study. In this paper, we extend existing likelihood ratio (LR) methodology to accurately infer the existence of 3/4S, distinguishing them from full siblings and second-degree relatives. We use bootstrap confidence intervals to express uncertainty in the LRs. Our proposal accounts for linkage disequilibrium (LD) by using marker pruning, and we validate our methodology with a pedigree-based simulation study accounting for both LD and recombination. An empirical genome-wide array data set from the GCAT Genomes for Life cohort project is used to illustrate the method.Subject terms: Genetic markers, Population genetics  相似文献   
267.
In fungi and many other organisms, a thick outer cell wall is responsible for determining the shape of the cell and for maintaining its integrity. The budding yeast Saccharomyces cerevisiae has been a useful model organism for the study of cell wall synthesis, and over the past few decades, many aspects of the composition, structure, and enzymology of the cell wall have been elucidated. The cell wall of budding yeasts is a complex and dynamic structure; its arrangement alters as the cell grows, and its composition changes in response to different environmental conditions and at different times during the yeast life cycle. In the past few years, we have witnessed a profilic genetic and molecular characterization of some key aspects of cell wall polymer synthesis and hydrolysis in the budding yeast. Furthermore, this organism has been the target of numerous recent studies on the topic of morphogenesis, which have had an enormous impact on our understanding of the intracellular events that participate in directed cell wall synthesis. A number of components that direct polarized secretion, including those involved in assembly and organization of the actin cytoskeleton, secretory pathways, and a series of novel signal transduction systems and regulatory components have been identified. Analysis of these different components has suggested pathways by which polarized secretion is directed and controlled. Our aim is to offer an overall view of the current understanding of cell wall dynamics and of the complex network that controls polarized growth at particular stages of the budding yeast cell cycle and life cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号