首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   8篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   7篇
  2013年   1篇
  2012年   7篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   10篇
  2006年   9篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  1997年   1篇
  1996年   2篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
51.
52.
53.
54.
55.

Background

Previous research has shown that oral processing characteristics like bite size and oral residence duration are related to the satiating efficiency of foods. Oral processing characteristics are influenced by food texture. Very little research has been done on the effect of food texture within solid foods on energy intake.

Objectives

The first objective was to investigate the effect of hardness of food on energy intake at lunch, and to link this effect to differences in food oral processing characteristics. The second objective was to investigate whether the reduction in energy intake at lunch will be compensated for in the subsequent dinner.

Design

Fifty subjects (11 male, BMI: 21±2 kg/m2, age: 24±2 y) participated in a cross-over study in which they consumed ad libitum from a lunch with soft foods or hard foods on two separate days. Oral processing characteristics at lunch were assessed by coding video records. Later on the same days, subjects consumed dinner ad libitum.

Results

Hard foods led to a ∼13% lower energy intake at lunch compared to soft foods (P<0.001). Hard foods were consumed with smaller bites, longer oral duration per gram food, and more chewing per gram food compared to the soft foods (P<0.05). Energy intake at dinner did not differ after both lunches (P = 0.16).

Conclusions

Hard foods led to reduced energy intake compared to soft foods, and this reduction in energy intake was sustained over the next meal. We argue that the differences in oral processing characteristics produced by the hardness of the foods explain the effect on intake. The sustained reduction in energy intake suggests that changes in food texture can be a helpful tool in reducing the overall daily energy intake.  相似文献   
56.

Background and Aims

Prediction of severe clinical outcomes in Clostridium difficile infection (CDI) is important to inform management decisions for optimum patient care. Currently, treatment recommendations for CDI vary based on disease severity but validated methods to predict severe disease are lacking. The aim of the study was to derive and validate a clinical prediction tool for severe outcomes in CDI.

Methods

A cohort totaling 638 patients with CDI was prospectively studied at three tertiary care clinical sites (Boston, Dublin and Houston). The clinical prediction rule (CPR) was developed by multivariate logistic regression analysis using the Boston cohort and the performance of this model was then evaluated in the combined Houston and Dublin cohorts.

Results

The CPR included the following three binary variables: age ≥ 65 years, peak serum creatinine ≥2 mg/dL and peak peripheral blood leukocyte count of ≥20,000 cells/μL. The Clostridium difficile severity score (CDSS) correctly classified 76.5% (95% CI: 70.87-81.31) and 72.5% (95% CI: 67.52-76.91) of patients in the derivation and validation cohorts, respectively. In the validation cohort, CDSS scores of 0, 1, 2 or 3 were associated with severe clinical outcomes of CDI in 4.7%, 13.8%, 33.3% and 40.0% of cases respectively.

Conclusions

We prospectively derived and validated a clinical prediction rule for severe CDI that is simple, reliable and accurate and can be used to identify high-risk patients most likely to benefit from measures to prevent complications of CDI.  相似文献   
57.
58.
The identification of RNases or RNase effectors is a continuous challenge, particularly given the current importance of RNAs in the control of genome expression. Here, we show that a fluorogenic RNA–DNA hybrid is a powerful tool for a real-time fluorescence detection and assay of exoribonucleases (RT-FeDEx). This RT-FeDEx assay provides a new strategy for the isolation, purification, and assay of known and unknown exoribonucleases.  相似文献   
59.
The highly conserved ribonuclease RNase Z catalyzes the endonucleolytic removal of the 3' extension of the majority of tRNA precursors. Here we present the structure of the complex between Bacillus subtilis RNase Z and tRNA(Thr), the first structure of a ribonucleolytic processing enzyme bound to tRNA. Binding of tRNA to RNase Z causes conformational changes in both partners to promote reorganization of the catalytic site and tRNA cleavage.  相似文献   
60.
In contrast to Escherichia coli, where the 3' ends of tRNAs are primarily generated by exoribonucleases, maturation of the 3' end of tRNAs is catalysed by an endoribonuclease, known as RNase Z (or 3' tRNase), in many eukaryotic and archaeal systems. RNase Z cleaves tRNA precursors 3' to the discriminator base. Here we show that this activity, previously unsuspected in bacteria, is encoded by the yqjK gene of Bacillus subtilis. Decreased yqjK expression leads to an accumulation of a population of B.subtilis tRNAs in vivo, none of which have a CCA motif encoded in their genes, and YqjK cleaves tRNA precursors with the same specificity as plant RNase Z in vitro. We have thus renamed the gene rnz. A CCA motif downstream of the discriminator base inhibits RNase Z activity in vitro, with most of the inhibition due to the first C residue. Lastly, tRNAs with long 5' extensions are poor substrates for cleavage, suggesting that for some tRNAs, processing of the 5' end by RNase P may have to precede RNase Z cleavage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号