首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2013年   2篇
  2012年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  1999年   1篇
  1997年   2篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
11.

Key message

Novel QTL conferring resistance to both the SDS and SCN was detected in two RIL populations. Dual resistant RILs could be used in breeding programs for developing resistant soybean cultivars.

Abstract

Soybean cultivars, susceptible to the fungus Fusarium virguliforme, which causes sudden death syndrome (SDS), and to the soybean cyst nematode (SCN) (Heterodera glycines), suffer yield losses valued over a billion dollars annually. Both pathogens may occur in the same production fields. Planting of cultivars genetically resistant to both pathogens is considered one of the most effective means to control the two pathogens. The objective of the study was to map quantitative trait loci (QTL) underlying SDS and SCN resistances. Two recombinant inbred line (RIL) populations were developed by crossing ‘A95-684043’, a high-yielding maturity group (MG) II line resistant to SCN, with ‘LS94-3207’ and ‘LS98-0582’ of MG IV, resistant to both F. virguliforme and SCN. Two hundred F7 derived recombinant inbred lines from each population AX19286 (A95-684043 × LS94-3207) and AX19287 (A95-684043 × LS98-0582) were screened for resistance to each pathogen under greenhouse conditions. Five hundred and eighty and 371 SNP markers were used for mapping resistance QTL in each population. In AX19286, one novel SCN resistance QTL was mapped to chromosome 8. In AX19287, one novel SDS resistance QTL was mapped to chromosome 17 and one novel SCN resistance QTL was mapped to chromosome 11. Previously identified additional SDS and SCN resistance QTL were also detected in the study. Lines possessing superior resistance to both pathogens were also identified and could be used as germplasm sources for breeding SDS- and SCN-resistant soybean cultivars.
  相似文献   
12.
Summary Two new soybean [Glycine max (L.) Merr. cv. Williams] loci, designated Eu2 and Eu3, were identified in which ethyl methanesulfonate (EMS)-induced mutation eliminated urease activity. These loci showed no linkage to each other or to the Sun-Eul locus described in the accompanying paper (Meyer-Bothling and Polacco 1987). Unlike sun (seed urease-null) mutations those at Eu2 and Eu3 affected both urease isozymes: the embryo-specific (seed) and the ubiquitous (leaf) urease. The eu2/eu2 mutant had no leaf activity and 0.6% normal seed activity. Two mutant Eu3 alleles were recovered, eu3-e1 and Eu3-e3. The eu3-e1/eu3-e1 genotype lacked both activities while Eu3-e3/Eu3-e3 had coordinately reduced leaf (0.1%) and seed (0.1%) activities. Only the Eu3-e3 mutation showed partial dominance, yielding about 5%–10% normal activity for each urease in the heterozygous state. Each homozygous mutant contained normal levels of embryo-specific urease mRNA and protein subunit, both of normal size. However, urease polymerization was aberrant in all three mutants. In all cases where urease could be measured, it was found to be temperature sensitive and, in addition, the embryospecific urease of Eu3-e3/Eu3-e3 had an altered pH dependence. These mutants may be defective in a urease maturation function common to both isozymes as suggested by the normal levels of urease gene product, coordinately (or nearly so) reduced urease isozyme activities, temperature sensitivity in both ureases (Eu3-e3) and the non-linkage of Eu2 and Eu3 to the locus encoding embryo-specific urease (Sun-Eul). Ubiquitous urease activity is reduced in mutant seed coat and callus culture as well as in leaf and cotyledon tissue. No mutant callus utilized urea (5 to 10 nM) as sole nitrogen source. However, all mutant cell lines tolerated normally toxic levels of urea (25 to 250 mM) added to medium containing KNO3/NH4NO3 as nitrogen source. Urea thus may be used in cell culture as a selection agent for phenotypes either lacking or regaining an active ubiquitous urease.  相似文献   
13.

Key message

Four novel QTL and interactions among QTL were identified in this research, using as a parent line the most SDS-resistant genotype within soybean cultivars of the US early maturity groups.

Abstract

Soybean sudden death syndrome (SDS) reduces soybean yield in most of the growing areas of the world. The causal agent of SDS, soilborne fungus Fusarium virguliforme (Fv), releases phytotoxins taken up by the plant to produce chlorosis and necrosis in the leaves. Planting resistant cultivars is the most successful management practice to control the disease. The objective of this study was to identify quantitative trait loci (QTL) associated with the resistance response of MN1606SP to SDS. A mapping population of F 2:3 lines created by crossing the highly resistant cultivar ‘MN1606SP’ and the susceptible cultivar ‘Spencer’ was phenotyped in the greenhouse at three different planting times, each with three replications. Plants were artificially inoculated using SDS infested sorghum homogeneously mixed with the soil. Data were collected on three disease criteria, foliar disease incidence (DI), foliar leaf scorch disease severity (DS), and root rot severity. Disease index (DX) was calculated as DI × DS. Ten QTL were identified for the different disease assessment criteria, three for DI, four for DX, and three for root rot severity. Three QTL identified for root rot severity and one QTL for disease incidence are considered novel, since no previous reports related to these QTL are available. Among QTL, two interactions were detected between four different QTL. The interactions suggest that resistance to SDS is not only dependent on additive gene effects. The novel QTL and the interactions observed in this study will be useful to soybean breeders for improvement of SDS resistance in soybean germplasm.
  相似文献   
14.
Sudden death syndrome (SDS) is an important soybean [Glycine max (L) Merrill] disease caused by the soilborne fungus Fusarium virguliforme. Currently, 14 quantitative trait loci (QTL) had been confirmed associated with resistance or tolerance to SDS. The objective of the study was to evaluate usefulness of 10 of these QTL in controlling disease expression. Six populations were developed providing a total of 321 F2-derived lines for the study. Recombinant inbred lines (RIL) used as parents were obtained from populations of ‘Essex’ × ‘Forrest’ (EF), ‘Flyer’ × ‘Hartwig’ (FH), and ‘Pyramid’ × ‘Douglas’ (PD). Disease resistance was evaluated in the greenhouse at three different planting times, each with four replications, using sorghum infested with F. virguliforme homogeneously mixed in the soil (Luckew et al., Crop Sci 52:2215–2223, 2012). Four disease assessment criteria—foliar disease incidence (DI), foliar leaf scorch disease severity (DS), area under the disease progress curve (AUDPC), and root rot severity—were used. QTL were identified in more than one of the disease assessment criteria, mainly associated with lines in the most resistant categories. Five QTL (qRfs4, qRfs5, qRfs7, qRfs12, and Rfs16) were associated with at least one of the disease assessments across multiple populations. Of the five, qRfs4 was associated with DI, AUDPC, and root rot severity, and Rfs16 with AUDPC and root rot severity. The findings suggest it may be possible for plant breeders to focus on stacking a subset of the previously identified QTL to improve resistance to SDS in soybean.  相似文献   
15.
16.
17.
Mapping genetic loci for iron deficiency chlorosis in soybean   总被引:7,自引:0,他引:7  
The objective of this study was to map genes controlling iron deficiency chlorosis in two intraspecific soybean [Glycine max (L.) Merrill] populations. Chlorosis symptoms were evaluated by visual scores and spectrometric chlorophyll determinations at the V4 stage (third trifoliolate leaf fully developed) in the field in 1993, and at V2 (first trifoliolate leaf fully developed) and V4 stages in 1994. A total of 89 RFLP and 10 SSR markers in the Pride B216 x A15 population, and 82 RFLP, 14 SSR and 1 morphological I (hilum color) markers in the Anoka x A7 population were used to map quantitative trait loci (QTL) affecting iron deficiency chlorosis. QTL with minor effects were detected on six linkage groups of the Pride B216 x A15 population, suggesting a typical polygene mechanism. In contrast, in the Anoka x A7 population, one QTL contributed an average of 72.7% of the visual score variation and 68.8% of the chlorophyll concentration variation and was mapped on linkage group N. Another QTL for visual score variation, and one for chlorophyll concentration variation were detected on linkage groups A1 and I, respectively. Due to the large LOD score and major genetic effect of the QTL on linkage group N, the quantitative data was reclassified into qualitative data fitting a one major gene model according to the means of the QTL genotypic classes. The major gene was mapped in the same interval of linkage group N using both visual scores and chlorophyll concentrations, thus verifying that one major gene is involved in segregation for iron chlorosis deficiency in the Anoka x A7 population. This study supported a previous hypothesis that two separate genetic mechanisms control iron deficiency in soybean.  相似文献   
18.
Sandhu D  Gao H  Cianzio S  Bhattacharyya MK 《Genetics》2004,168(4):2157-2167
Resistance of soybean against the oomycete pathogen Phytophthora sojae is conferred by a series of Rps genes. We have characterized a disease resistance gene-like sequence NBSRps4/6 that was introgressed into soybean lines along with Rps4 or Rps6. High-resolution genetic mapping established that NBSRps4/6 cosegregates with Rps4. Two mutants, M1 and M2, showing rearrangements in the NBSRps4/6 region were identified from analyses of 82 F(1)'s and 201 selfed HARO4272 plants containing Rps4. Fingerprints of these mutants are identical to those of HARO4272 for 176 SSR markers representing the whole genome except the NBSRps4/6 region. Both mutants showed a gain of race specificities, distinct from the one encoded by Rps4. To investigate the possible mechanism of gain of Phytophthora resistance in M1, the novel race specificity was mapped. Surprisingly, the gene encoding this resistance mapped to the Rps3 region, indicating that this gene could be either allelic or linked to Rps3. Recombinant analyses have shown that deletion of NBSRps4/6 in M1 is associated with the loss of Rps4 function. The NBSRps4/6 sequence is highly transcribed in etiolated hypocotyls expressing the Phytophthora resistance. It is most likely that a copy of the NBSRps4/6 sequence is the Rps4 gene. Possible mechanisms of the deletion in the NBSRps4/6 region and introgression of two unlinked Rps genes into Harosoy are discussed.  相似文献   
19.
Soybean genes involved in nickel insertion into urease   总被引:2,自引:0,他引:2  
In soybean, mutation in the Eu2 or in the Eu3 gene eliminates the activities, but not the proteins, of the embryo-specific and the ubiquitous ureases, encoded by Eu1 and Eu4, respectively. This pleiotropic urease-negative phenotype is consistent with accessory gene functions encoded by Eu2 and Eu3, i.e. correct insertion of Ni into the metallocentre of each urease. To test an accessory gene function an examination was made of segregation of alleles at Eu2 and Eu3 with segregation of an RFLP revealed by a plant homologue of the bacterial urease accessory gene, ureG. The eu3-e1/eu3-e1 mutant, which has a urease activity-null phenotype, lacked a 1.4 kb EcoRV genomic fragment found in progenitor cultivar Williams, cv Williams 82 and in two mutants at the Eu2 locus, eu2/eu2 and EN24, the latter described here for the first time. The lack of the 1.4 kb band segregated with eu3-e1 in a cross of eu3-e1/eu3-e1 x EN24. The second approach was to attempt partial correction of the urease-negative trait by Ni supplementation in vitro. First a small, reproducible stimulation of activity in mixed extracts of mutants which complement genetically, namely {eu2/eu2 plus eu3-e1/eu3-e1} and {EN24 plus eu3-e1/eu3-e1} was observed. Activation proceeded for several hours in these extracts containing endogenous Ni. In mixed extracts from Ni-free embryos, activation was dependent on added Ni; Ni had no effect on individual mutant extracts. By genetic and biochemical criteria the ubiquitous urease was the sole or major species activated, an activation which approached 10% normal activity.Key words: Nickel, urease, soybean, UreG, UreE.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号