首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1015篇
  免费   80篇
  2023年   2篇
  2022年   9篇
  2021年   20篇
  2020年   13篇
  2019年   10篇
  2018年   23篇
  2017年   3篇
  2016年   13篇
  2015年   35篇
  2014年   52篇
  2013年   83篇
  2012年   91篇
  2011年   67篇
  2010年   49篇
  2009年   61篇
  2008年   89篇
  2007年   90篇
  2006年   71篇
  2005年   75篇
  2004年   58篇
  2003年   67篇
  2002年   56篇
  2001年   7篇
  2000年   4篇
  1999年   10篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1988年   1篇
  1987年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1095条查询结果,搜索用时 15 毫秒
921.
Amyloid fibril depositions are associated with many neurodegenerative diseases as well as amyloidosis. The detailed molecular mechanism of fibrillation is still far from complete understanding. In our previous study of in vitro fibrillation of hen egg white lysozyme, an irreversible partially unfolded intermediate was characterized. A similarity of unfolding kinetics found for the secondary and tertiary structure of lysozyme using deep UV resonance Raman (DUVRR) and tryptophan fluorescence spectroscopy leads to a hypothesis that the unfolding might be a two-state transition. In this study, chemometric analysis, including abstract factor analysis (AFA), target factor analysis (TFA), evolving factor analysis (EFA), multivariate curve resolution-alternating least squares (ALS), and genetic algorithm, was employed to verify that only two principal components contribute to the DUVRR and fluorescence spectra of soluble fraction of lysozyme during the fibrillation process. However, a definite conclusion on the number of conformers cannot be made based solely on the above spectroscopic data although chemometric analysis suggested the existence of two principal components. Therefore, electrospray ionization mass spectrometry (ESI-MS) was also utilized to address the hypothesis. The protein ion charge state distribution (CSD) envelopes of the incubated lysozyme were well fitted with two principal components. Based on the above analysis, the partial unfolding of lysozyme during in vitro fibrillation was characterized quantitatively and proven to be a two-state transition. The combination of ESI-MS and Raman and fluorescence spectroscopies with advanced statistical analysis was demonstrated to be a powerful methodology for studying protein structural transformations.  相似文献   
922.
A real-time PCR SYBR green assay was developed to quantify populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing (phlD+) strains of Pseudomonas fluorescens in soil and the rhizosphere. Primers were designed and PCR conditions were optimized to specifically amplify the phlD gene from four different genotypes of phlD+ P. fluorescens. Using purified genomic DNA and genomic DNA extracted from washes of wheat roots spiked with bacteria, standard curves relating the threshold cycles (C(T)s) and copies of the phlD gene were generated for P. fluorescens strains belonging to genotypes A (Pf-5), B (Q2-87), D (Q8r1-96 and FTAD1R34), and I (FTAD1R36). The detection limits of the optimized real-time PCR assay were 60 to 600 fg (8 to 80 CFU) for genomic DNA isolated from pure cultures of P. fluorescens and 600 fg to 6.0 pg (80 to 800 CFU, corresponding to log 4 to 5 phlD+ strain CFU/rhizosphere) for bacterial DNA extracted from plant root washes. The real-time PCR assay was utilized to quantify phlD+ pseudomonads in the wheat rhizosphere. Regression analysis of population densities detected by real-time PCR and by a previously described phlD-specific PCR-based dilution endpoint assay indicated a significant linear relationship (P = 0.0016, r2 = 0.2). Validation of real-time PCR assays with environmental samples was performed with two different soils and demonstrated the detection of more than one genotype in Quincy take-all decline soil. The greatest advantage of the developed real-time PCR is culture independence, which allows determination of population densities and the genotype composition of 2,4-DAPG producers directly from the plant rhizospheres and soil.  相似文献   
923.
The wild-type anionic tobacco peroxidase and its Glu141Phe mutant have been expressed in Escherichia coli, and reactivated to yield active enzymes. A Glu141Phe substitution was made with the tobacco anionic peroxidase (TOP) to mimic neutral plant peroxidases, such as horseradish peroxidase (HRP). Both recombinant forms of tobacco peroxidase show extremely high activity in luminol oxidation with hydrogen peroxide, and thus, preserve the unique property of the native tobacco peroxidase, a superior chemiluminescent reagent. The chemiluminescent signal intensity for both recombinant forms of TOP is orders of magnitude higher than that for wild-type recombinant HRP. The substitution slightly increases TOP activity and stability in the reaction course, but has almost no effect on the optimal parameters of the reaction (pH, luminol and hydrogen peroxide concentrations) and calibration plot. Comparison of substrate specificity profiles for recombinant TOP and HRP demonstrates that Glu141 has no principal effect on the enzyme activity. It is not the presence of the negative charge at the haem edge, but the high redox potential of TOP Compounds I and II that provides high activity towards aromatic amines and aminophenols, and luminol in particular.  相似文献   
924.
Trypanosomatid diversity in Heteroptera was sampled using a culture-independent approach based on amplification and sequencing of Spliced Leader RNA gene repeats from environmental samples. By combining the data collected herein with that of previous work, the prevalence of parasites was found to be 22%-23%. Out of approximately 170 host species investigated nearly 60 were found to harbor trypanosomatids. The parasites found were grouped by cluster analysis into 48 typing units. Most of these were well separated from the known groups and, therefore, likely represent new trypanosomatid species. The sequences for each typing unit serve as barcodes to facilitate their recognition in the future. As the sampled host species represent a minor fraction of potential hosts, the entire trypanosomatid diversity is far greater than described thus far. Investigations of trypanosomatid diversity, host-specificity, and biogeography have become feasible using the approach described herein.  相似文献   
925.
During protein synthesis, transfer RNA and messenger RNA undergo coupled translocation through the ribosome's A, P and E sites, a process catalyzed by elongation factor EF-G. Viomycin blocks translocation on bacterial ribosomes and is believed to bind at the subunit interface. Using fluorescent resonance energy transfer and chemical footprinting, we show that viomycin traps the ribosome in an intermediate state of translocation. Changes in FRET efficiency show that viomycin causes relative movement of the two ribosomal subunits indistinguishable from that induced by binding of EF-G with GDPNP. Chemical probing experiments indicate that viomycin induces formation of a hybrid-state translocation intermediate. Thus, viomycin inhibits translation through a unique mechanism, locking ribosomes in the hybrid state; the EF-G-induced 'ratcheted' state observed by cryo-EM is identical to the hybrid state; and, since translation is viomycin sensitive, the hybrid state may be present in vivo.  相似文献   
926.
927.
Selenium is a trace element with significant biomedical potential. It is essential in mammals due to its occurrence in several proteins in the form of selenocysteine (Sec). One of the most abundant mammalian Sec-containing proteins is selenoprotein W (SelW). This protein of unknown function has a broad expression pattern and contains a candidate CXXU (where U represents Sec) redox motif. Here, we report the solution structure of the Sec13-->Cys variant of mouse SelW determined through high resolution NMR spectroscopy. The protein has a thioredoxin-like fold with the CXXU motif located in an exposed loop similarly to the redox-active site in thioredoxin. Protein dynamics studies revealed the rigidity of the protein backbone and mobility of two external loops and suggested a role of these loops in interaction with SelW partners. Molecular modeling of structures of other members of the Rdx family based on the SelW structure identified new conserved features in these proteins, including an aromatic cluster and interacting loops. Our previous study suggested an interaction between SelW and 14-3-3 proteins. In the present work, with the aid of NMR spectroscopy, we demonstrated specificity of this interaction and identified mobile loops in SelW as interacting surfaces. This finding suggests that 14-3-3 are redox-regulated proteins.  相似文献   
928.
The full-length, two-domain response regulator RegX3 from Mycobacterium tuberculosis is a dimer stabilized by three-dimensional domain swapping. Dimerization is known to occur in the OmpR/PhoB subfamily of response regulators upon activation but has previously only been structurally characterized for isolated receiver domains. The RegX3 dimer has a bipartite intermolecular interface, which buries 2357 A(2) per monomer. The two parts of the interface are between the two receiver domains (dimerization interface) and between a composite receiver domain and the effector domain of the second molecule (interdomain interface). The structure provides support for the importance of threonine and tyrosine residues in the signal transduction mechanism. These residues occur in an active-like conformation stabilized by lanthanum ions. In solution, RegX3 exists as both a monomer and a dimer in a concentration-dependent equilibrium. The dimer in solution differs from the active form observed in the crystal, resembling instead the model of the inactive full-length response regulator PhoB.  相似文献   
929.
Agrobacterium tumefaciens infects plant cells by the transfer of DNA. A key factor in this process is the bacterial virulence protein VirE2, which associates stoichiometrically with the transported single-stranded (ss) DNA molecule (T-strand). As observed in vitro by transmission electron microscopy, VirE2-ssDNA readily forms an extended helical complex with a structure well suited to the tasks of DNA protection and nuclear import. Here we have elucidated the role of the specific molecular chaperone VirE1 in regulating VireE2-VirE2 and VirE2-ssDNA interactions. VirE2 alone formed functional filamentous aggregates capable of ssDNA binding. In contrast, co-expression with VirE1 yielded monodisperse VirE1-VirE2 complexes. Cooperative binding of VirE2 to ssDNA released VirE1, resulting in a controlled formation mechanism for the helical complex that is further promoted by macromolecular crowding. Based on this in vitro evidence, we suggest that the constrained volume of the VirB channel provides a natural site for the exchange of VirE2 binding from VirE1 to the T-strand.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号