首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   598篇
  免费   57篇
  国内免费   3篇
  658篇
  2019年   4篇
  2018年   5篇
  2017年   9篇
  2016年   10篇
  2015年   18篇
  2014年   25篇
  2013年   23篇
  2012年   30篇
  2011年   33篇
  2010年   33篇
  2009年   29篇
  2008年   29篇
  2007年   37篇
  2006年   26篇
  2005年   24篇
  2004年   18篇
  2003年   17篇
  2002年   19篇
  2001年   21篇
  2000年   23篇
  1999年   18篇
  1998年   14篇
  1997年   6篇
  1996年   11篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   7篇
  1991年   6篇
  1990年   13篇
  1989年   9篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   7篇
  1983年   7篇
  1982年   5篇
  1981年   5篇
  1980年   8篇
  1979年   8篇
  1977年   3篇
  1976年   4篇
  1974年   5篇
  1973年   4篇
  1971年   3篇
  1970年   4篇
  1935年   3篇
  1928年   2篇
  1925年   2篇
排序方式: 共有658条查询结果,搜索用时 7 毫秒
621.
The topology of the steroid hydroxylase complexes in bovine adrenocortical mitochondria was studied by using nonpenetrating artificial electron acceptors and the impermeable protein reagent diazobenzenesulfonate. Inhibition of steroid hydroxylase activity by ferricyanide and dichlorophenolindophenol sulfonate was only observed in mitochondria which had been damaged by various techniques. Intact mitochondria were not inhibited by these reagents. The reaction was monitored by oxygen uptake due to hydroxylation of deoxycorticosterone, as well as P-450 reduction and corticosterone formation. The results obtained were similar regardless of how the activity was measured. Labeling of the mitochondria with the nonpenetrating protein reagent diazobenzenesulfonate also inhibited P-450 reduction and corticosterone formation in mitochondria which had been damaged prior to addition of this reagent. Intact mitochondria which were labeled with this reagent showed very little inhibition of both activities. These results strongly suggest that all protein components of the steroid 11beta-hydroxylase system are located on the matrix side of the mitochondrial inner membrane. The inability of ferricyanide, dichlorophenolindophenol sulfonate, and diazobenzenesulfonate to inhibit the malate-dependent reduction of P-450 in intact mitochondria implies that all the P-450-dependent mitochondrial steroid hydroxylase systems are located on the matrix side of the inner mitochondrial membrane.  相似文献   
622.
623.
Analysis of purified Na,K-ATPase from brine shrimp nauplii revealed two molecular forms of the alpha subunit separable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis [G.L. Peterson, R.D. Ewing, S.R. Hootman, and F.P. Conte (1978) J. Biol. Chem. 253:4762]. The molecular form with lower mobility is designated alpha 1 and the one with higher mobility, alpha 2, in a neutral or alkaline gel system. Differences in Na+-dependent, K+-sensitive phosphorylation of these two molecular forms have been investigated by directly measuring the radioactivity present in each phosphoprotein after separation of the two forms by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the presence of Na+,Mg2+, and ATP, when the ATP concentration is above 1 microM, both alpha subunits are phosphorylated, although the phosphoprotein content of alpha 1 is considerably greater than that of alpha 2. Below 1 microM ATP, the phosphoprotein content of alpha 2 is even further reduced. These striking differences in phosphorylation at low ATP concentrations are not due to a greater instability of the alpha 2 phosphoprotein during the long electrophoresis times or during fixation, staining, and destaining. The proportion of total phosphoprotein content in alpha 2, as well as the relationship between phosphoprotein content and ATP concentration, is unchanged when the radioactive analysis is performed on frozen gels that have been electrophoresed for shorter times, even though the actual amount of phosphorylation is 15 times greater than with fixed gels. Since the concentration of alpha 1 and alpha 2 vary during development [G.L. Peterson, L. Churchill, J.A. Fisher, and L.E. Hokin (1982) J. Exp. Zool. 221:295], the differences in phosphorylation may be relevant to differences in Na,K-ATPase activity during different development stages.  相似文献   
624.
625.
626.
627.
Assessing the richness of invertebrate taxa to aid conservation and management requires a better understanding of the potential sources of error. Patterns of richness for heathland spiders at the species and family levels were compared across three sampling methods, four spatial scales, and monthly intervals (for 16 months). A total of 33 families and 130 species was collected: pitfall traps collected 94% of species, sweep net, 25%, and visual search, 41%. The sampling methods produced variable results. Pitfall trap and sweep net techniques identified significant, yet contrasting spatial differences in the number of families and species at one spatial scale. Pitfall trap data reflected strong temporal variation that influenced spatial patterns in richness (across one spatial scale for families and two for species). The use of broader temporal scales introduced a potential failure to detect significant differences in the richness of ground active spiders, and this risk varied spatially. The sweep net is not recommended for this habitat, although a method that targets the foliage is required for a more complete faunal assessment. Visual searches detected no significant patterns in richness, yet given its potential and increasing use for rapid biodiversity surveys, ways to improve sampling efficiency are suggested.  相似文献   
628.
629.
The target size of four soluble enzymes (beta-galactosidase, pyruvate kinase, alcohol dehydrogenase, and glucose-6-phosphate dehydrogenase) in the presence or absence of subcellular membrane fractions has been determined by the radiation-inactivation method using samples in the frozen state. For each of the four enzymes, full activity was recovered after freezing and thawing in the absence of radiation. We found minimal (less than 20%) binding of the enzymes to either submitochondrial vesicles or sarcoplasmic reticulum vesicles. Under the conditions tested, beta-galactosidase, pyruvate kinase, and alcohol dehydrogenase exhibited target sizes which varied according to the experimental conditions, i.e., the buffer selected and also the presence or absence of membrane preparations. For these tetrameric enzymes, the target sizes were generally comparable to either a monomer or a dimer. By contrast, the target size of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides was found to be essentially invariant when frozen in a variety of buffers and in the presence or absence of either cryoprotectant (sucrose or glycerol) or different membrane preparations. The target size from 19 separate determinations gave an average value of 104 +/- 16 kDa, which is comparable to the molecular weight of the enzyme (104 kDa). We conclude that glucose-6-phosphate dehydrogenase from L. mesenteroides is a reliable internal standard for radiation-inactivation studies of membrane preparations in the frozen state.  相似文献   
630.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号