首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   598篇
  免费   57篇
  国内免费   3篇
  2019年   4篇
  2018年   5篇
  2017年   9篇
  2016年   10篇
  2015年   18篇
  2014年   25篇
  2013年   23篇
  2012年   30篇
  2011年   33篇
  2010年   33篇
  2009年   29篇
  2008年   29篇
  2007年   37篇
  2006年   26篇
  2005年   24篇
  2004年   18篇
  2003年   17篇
  2002年   19篇
  2001年   21篇
  2000年   23篇
  1999年   18篇
  1998年   14篇
  1997年   6篇
  1996年   11篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   7篇
  1991年   6篇
  1990年   13篇
  1989年   9篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   7篇
  1983年   7篇
  1982年   5篇
  1981年   5篇
  1980年   8篇
  1979年   8篇
  1977年   3篇
  1976年   4篇
  1974年   5篇
  1973年   4篇
  1971年   3篇
  1970年   4篇
  1935年   3篇
  1928年   2篇
  1925年   2篇
排序方式: 共有658条查询结果,搜索用时 484 毫秒
201.
Measurement of a spinal motion segment stiffness matrix   总被引:3,自引:0,他引:3  
The six-degrees-of-freedom elastic behavior of spinal motion segments can be approximated by a stiffness matrix. A method is described to measure this stiffness matrix directly with the motion segment held under physiological conditions of axial preload and in an isotonic fluid bath by measuring the forces and moments associated with each of the six orthogonal translations and rotations. The stiffness matrix was obtained from the load-displacement measurements by linear least squares assuming a symmetric matrix. Results from a pig lumbar spinal motion segment in an isotonic bath, with and without a 500 N axial preload, showed a large stiffening effect with axial preload.  相似文献   
202.
Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic networks with known stoichiometry to address the fundamental question: “What can causal networks tell us about metabolic pathways?”. Using data from an Arabidopsis BaySha population and simulated data from dynamic models of pathway motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be used in the design of intervention strategies.  相似文献   
203.
204.
Despite considerable progress understanding genes that affect the HDL particle, its function, and cholesterol content, genes identified to date explain only a small percentage of the genetic variation. We used N-ethyl-N-nitrosourea mutagenesis in mice to discover novel genes that affect HDL cholesterol levels. Two mutant lines (Hlb218 and Hlb320) with low HDL cholesterol levels were established. Causal mutations in these lines were mapped using linkage analysis: for line Hlb218 within a 12 Mbp region on Chr 10; and for line Hlb320 within a 21 Mbp region on Chr 7. High-throughput sequencing of Hlb218 liver RNA identified a mutation in Pla2g12b. The transition of G to A leads to a cysteine to tyrosine change and most likely causes a loss of a disulfide bridge. Microarray analysis of Hlb320 liver RNA showed a 7-fold downregulation of Hpn; sequencing identified a mutation in the 3' splice site of exon 8. Northern blot confirmed lower mRNA expression level in Hlb320 and did not show a difference in splicing, suggesting that the mutation only affects the splicing rate. In addition to affecting HDL cholesterol, the mutated genes also lead to reduction in serum non-HDL cholesterol and triglyceride levels. Despite low HDL cholesterol levels, the mice from both mutant lines show similar atherosclerotic lesion sizes compared to control mice. These new mutant mouse models are valuable tools to further study the role of these genes, their affect on HDL cholesterol levels, and metabolism.  相似文献   
205.
206.
The JAX Diversity Outbred population is a new mouse resource derived from partially inbred Collaborative Cross strains and maintained by randomized outcrossing. As such, it segregates the same allelic variants as the Collaborative Cross but embeds these in a distinct population architecture in which each animal has a high degree of heterozygosity and carries a unique combination of alleles. Phenotypic diversity is striking and often divergent from phenotypes seen in the founder strains of the Collaborative Cross. Allele frequencies and recombination density in early generations of Diversity Outbred mice are consistent with expectations based on simulations of the mating design. We describe analytical methods for genetic mapping using this resource and demonstrate the power and high mapping resolution achieved with this population by mapping a serum cholesterol trait to a 2-Mb region on chromosome 3 containing only 11 genes. Analysis of the estimated allele effects in conjunction with complete genome sequence data of the founder strains reduced the pool of candidate polymorphisms to seven SNPs, five of which are located in an intergenic region upstream of the Foxo1 gene.  相似文献   
207.
Although the shape of the scapular glenoid fossa (SGF) may be influenced by epigenetic and developmental factors, there appears to be strong genetic control over its overall form, such that variation within and between hominin taxa in SGF shape may contain information about their evolutionary histories. Here we present the results of a geometric morphometric study of the SGF of the Neanderthal Vi-209 from Vindjia Cave (Croatia), relative to samples of Plio-Pleistocene, later Pleistocene, and recent hominins. Variation in overall SGF shape follows a chronological trend from the plesiomorphic condition seen in Australopithecus to modern humans, with pre-modern species of the genus Homo exhibiting intermediate morphologies. Change in body size across this temporal series is not linearly directional, which argues against static allometry as an explanation. However, life history and developmental rates change directionally across the series, suggesting an ontogenetic effect on the observed changes in shape (ontogenetic allometry). Within this framework, the morphospace occupied by the Neanderthals exhibits a discontinuous distribution. The Vindija SGF and those of the later Near Eastern Neanderthals (Kebara and Shanidar) approach the modern condition and are somewhat segregated from both northwestern European (Neandertal and La Ferrassie) and early Mediterranean Neanderthals (Krapina and Tabun). Although more than one scenario may account for the pattern seen in the Neanderthals, the data is consistent with palaeogenetic evidence suggesting low levels of gene flow between Neanderthals and modern humans in the Near East after ca. 120-100 ka (thousands of years ago) (with subsequent introgression of modern human alleles into eastern and central Europe). Thus, in keeping with previous analyses that document some modern human features in the Vindija Neanderthals, the Vindija G3 sample should not be seen as representative of ‘classic’ - that is, unadmixed, pre-contact - Neanderthal morphology.  相似文献   
208.
We investigated the effect of apolipoprotein E (Apoe) on albuminuria in the males of two independent F2 intercrosses between C57BL/6J and A/J mice, using wild-type inbred strains in the first cross and B6-Apoe(-/-) animals in the second cross. In the first cross, we identified three quantitative trait loci (QTL): chromosome (Chr) 2 [LOD 3.5, peak at 70 cM, confidence interval (C.I.) 28-88 cM]; Chr 9 (LOD 2.0, peak 5 cM, C.I. 5-25 cM); and Chr 19 (LOD 1.9, peak 49 cM, C.I. 23-54 cM). The Chr 2 and Chr 19 QTL were concordant with previously found QTL for renal damage in rat and human. The Chr 9 QTL was concordant with a locus found in rat. The second cross, testing only Apoe(-/-) progeny, did not identify any of these loci, but detected two other loci on Chr 4 (LOD 3.2, peak 54 cM, C.I. 29-73 cM) and Chr 6 (LOD 2.6, peak 33 cM, C.I. 11-61 cM), one of which was concordant with a QTL found in rat. The dependence of QTL detection on the presence of Apoe and the concordance of these QTL with rat and human kidney disease QTL suggest that Apoe plays a role in renal damage.  相似文献   
209.
To better characterize aging in mice, the Jackson Aging Center carried out a lifespan study of 31 genetically-diverse inbred mouse strains housed in a specific pathogen-free facility. Clinical assessments were carried out every 6 months, measuring multiple age-related phenotypes including neuromuscular, kidney and heart function, body composition, bone density, hematology, hormonal levels, and immune system parameters. In a concurrent cross-sectional study of the same 31 strains at 6, 12, and 20 months, more invasive measurements were carried out followed by necropsy to assess apoptosis, DNA repair, chromosome fragility, and histopathology. In this report, which is the initial paper of a series, the study design, median lifespans, and circulating insulin-like growth factor 1 (IGF1) levels at 6, 12, and 18 months are described for the first cohort of 32 females and 32 males of each strain. Survival curves varied dramatically among strains with the median lifespans ranging from 251 to 964 days. Plasma IGF1 levels, which also varied considerably at each time point, showed an inverse correlation with a median lifespan at 6 months ( R  = −0.33, P  = 0.01). This correlation became stronger if the short-lived strains with a median lifespan < 600 days were removed from the analysis ( R  = −0.53, P  < 0.01). These results support the hypothesis that the IGF1 pathway plays a key role in regulating longevity in mice and indicates that common genetic mechanisms may exist for regulating IGF1 levels and lifespan.  相似文献   
210.
A substantial genetic contribution to baseline peripheral blood counts has been established. We performed quantitative trait locus/loci (QTL) analyses to identify chromosome (Chr) regions harboring genes influencing the baseline white blood cell (WBC) count, platelet (Plt) count, and mean platelet volume (MPV) in F2 intercrosses between NZW/LacJ, SM/J, and C57BLKS/J inbred mice. We identified six significant WBC QTL: Wbcq1 (peak LOD score at 38 cM, Chr 1), Wbcq2 (42 cM, Chr 3), Wbcq3 (0 cM, Chr 15), Wbcq4 (58 cM, Chr 1), Wbcq5 (82 cM, Chr 1), and Wbcq6 (8 cM, Chr 14). Three significant Plt QTL were identified: Pltq1 (24 cM, Chr 2), Pltq2 (36 cM, Chr 7), and Pltq3 (10 cM, Chr 12). Two significant MPV QTL were identified, Mpvq1 (62 cM, Chr 15) and Mpvq2 (44 cM, Chr 8). In total, the WBC QTL accounted for up to 31% of the total variance in baseline WBC count, while the Plt and MPV QTL accounted for up to 30% and 49% of the total variance, respectively. These analyses underscore the genetic complexity underlying these traits in normal populations and provide the basis for future studies to identify novel genes involved in the regulation of mammalian hematopoiesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号