首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28504篇
  免费   2566篇
  国内免费   3920篇
  34990篇
  2024年   108篇
  2023年   452篇
  2022年   964篇
  2021年   1606篇
  2020年   1122篇
  2019年   1416篇
  2018年   1293篇
  2017年   973篇
  2016年   1235篇
  2015年   1876篇
  2014年   2295篇
  2013年   2392篇
  2012年   2901篇
  2011年   2513篇
  2010年   1647篇
  2009年   1536篇
  2008年   1657篇
  2007年   1511篇
  2006年   1260篇
  2005年   1128篇
  2004年   895篇
  2003年   813篇
  2002年   662篇
  2001年   443篇
  2000年   355篇
  1999年   369篇
  1998年   253篇
  1997年   201篇
  1996年   191篇
  1995年   153篇
  1994年   133篇
  1993年   91篇
  1992年   96篇
  1991年   86篇
  1990年   69篇
  1989年   62篇
  1988年   54篇
  1987年   35篇
  1986年   34篇
  1985年   44篇
  1984年   13篇
  1983年   15篇
  1982年   12篇
  1981年   11篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1969年   2篇
  1965年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Ni Y  Xu JH 《Biotechnology advances》2012,30(6):1279-1288
Chiral secondary alcohols play an important role in pharmaceutical, agrochemical, and chemical industries. In recent years, impressive steps forward have been achieved towards biocatalytic ketone reduction as a green and useful access to enantiopure alcohols. An increasing number of novel and robust enzymes are now accessible as a result of the ongoing progress in genomics, screening and evolution technologies, while process engineering provides further success in areas of biocatalytic reduction in meeting synthetic challenges. The versatile platform of these techniques and strategies offers the possibility to apply high substrate loading and thus to overcome the limitation of low volumetric productivity of usual enzymatic processes which is the bottleneck for their practical application. In addition, the integration of bioreduction with other enzymatic or chemical steps allows the efficient synthesis of more complex chiral products.  相似文献   
982.
Li X  Wang J  Li W  Xu Y  Shao D  Xie Y  Xie W  Kubota T  Narimatsu H  Zhang Y 《Glycobiology》2012,22(5):602-615
The first step of mucin-type O-glycosylation is catalyzed by members of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (ppGalNAc-T; EC 2.4.1.41) family. Each member of this family has unique substrate specificity and expression profiles. In this report, we describe a new subfamily of ppGalNAc-Ts, designated the Y subfamily. The Y subfamily consists of four members, ppGalNAc-T8, -T9, -T17 and -T18, in which the conserved YDX(5)WGGENXE sequence in the Gal/GalNAc-T motif of ppGalNAc-Ts is mutated to LDX(5)YGGENXE. Phylogenetic analysis revealed that the Y subfamily members only exist in vertebrates. All four Y subfamily members lack in vitro GalNAc-transferase activity toward classical substrates possibly because of the UDP-GalNAc-binding pocket mutants. However, ppGalNAc-T18, the newly identified defining member, was localized in the endoplasmic reticulum rather than the Golgi apparatus in lung carcinoma cells. The knockdown of ppGalNAc-T18 altered cell morphology, proliferation potential and changed cell O-glycosylation. ppGalNAc-T18 can also modulate the in vitro GalNAc-transferase activity of ppGalNAc-T2 and -T10, suggesting that it may be a chaperone-like protein. These findings suggest that the new Y subfamily of ppGalNAc-Ts plays an important role in protein glycosylation; characterizing their functions will provide new insight into the role of ppGalNAc-Ts.  相似文献   
983.
The existence of many highly similar genes in the lymphocyte receptor gene loci makes them difficult to investigate, and the determination of phased "haplotypes" has been particularly problematic. However, V(D)J gene rearrangements provide an opportunity to infer the association of Ig genes along the chromosomes. The chromosomal distribution of H chain genes in an Ig genotype can be inferred through analysis of VDJ rearrangements in individuals who are heterozygous at points within the IGH locus. We analyzed VDJ rearrangements from 44 individuals for whom sufficient unique rearrangements were available to allow comprehensive genotyping. Nine individuals were identified who were heterozygous at the IGHJ6 locus and for whom sufficient suitable VDJ rearrangements were available to allow comprehensive haplotyping. Each of the 18 resulting IGHV│IGHD│IGHJ haplotypes was unique. Apparent deletion polymorphisms were seen that involved as many as four contiguous, functional IGHV genes. Two deletion polymorphisms involving multiple contiguous IGHD genes were also inferred. Three previously unidentified gene duplications were detected, where two sequences recognized as allelic variants of a single gene were both inferred to be on a single chromosome. Phased genomic data brings clarity to the study of the contribution of each gene to the available repertoire of rearranged VDJ genes. Analysis of rearrangement frequencies suggests that particular genes may have substantially different yet predictable propensities for rearrangement within different haplotypes. Together with data highlighting the extent of haplotypic variation within the population, this suggests that there may be substantial variability in the available Ab repertoires of different individuals.  相似文献   
984.
探索了F蛋白缺失及核心蛋白(Core)二级结构改变对丙型肝炎病毒(HCV)复制和感染性的影响.利用定点突变方法,将J6JFH1的核心基因引进5个终止密码子以中断F蛋白的表达,从而获得F蛋白缺失的病毒复制子J6JFH1/ΔF.体外制备RNA转录体,并电穿孔转染Huh7.5.1细胞,采用免疫荧光、实时荧光定量PCR方法以及病毒感染等方法,观察F蛋白缺失对病毒复制、蛋白质表达及转染细胞上清感染性病毒颗粒产生的影响.在此基础上,构建5个单一突变病毒体,对HCV核心蛋白进行二级结构分析,观察核心蛋白二级结构对HCV复制和翻译的影响.结果显示,转染48 h后,J6JFH1/ΔF与野生型J6JFH1相比,J6JFH1/ΔF转染阳性细胞数明显降低,细胞内HCV RNA 水平降低约95%,J6JFH1/ΔF转染后不同时间点细胞上清中HCV RNA拷贝数和病毒颗粒也明显降低.5个单一突变体不影响核心基因二级结构,病毒在细胞内复制和感染性与野生型水平一致.J6JFH1/ΔF所产生的改变可能是由于5处突变导致核心基因二级结构改变而造成的.结果说明,HCV F蛋白缺失不影响病毒的复制翻译及病毒颗粒的包装释放,核心蛋白二级结构的改变对病毒复制和翻译则产生较大影响.  相似文献   
985.
The essential stages of bacterial cell separation are described as the synthesis and hydrolysis of septal peptidoglycan (PG). The amidase, AmiC, which cleaves the peptide side‐chains linked to the glycan strands, contributes critically to this process and has been studied extensively in model strains of Escherichia coli. However, insights into the contribution of this protein to other processes in the bacterial cell have been limited. Xanthomonas campestris pv. campestris (Xcc) is a phytopathogen that causes black rot disease in many economically important plants. We investigated how AmiC and LytM family regulators, NlpD and EnvC, contribute to virulence and cell separation in this organism. Biochemical analyses of purified AmiC demonstrated that it could hydrolyse PG and its activity could be potentiated by the presence of the regulator NlpD. We also established that deletion of the genes encoding amiC1 or nlpD led to a reduction in virulence as well as effects on colony‐forming units and cell morphology. Moreover, further genetic and biochemical evidence showed that AmiC1 and NlpD affect the secretion of type III effector XC3176 and hypersensitive response (HR) induction in planta. These findings indicate that, in addition to their well‐studied role(s) in cell separation, AmiC and NlpD make an important contribution to the type III secretion (T3S) and virulence regulation in this important plant pathogen.  相似文献   
986.
Vibrio cholerae can enter a viable but non-culturable (VBNC) state when it encounters unfavourable environments; VBNC cells serve as important reservoirs and still pose threats to public health. The genetic regulation of V. cholerae entering its VBNC state is not well understood. Here, we show a confrontation strategy adapted by V. cholerae O1 in which it utilizes a quorum sensing (QS) system to prevent transition into a VBNC state under low nutrition and temperature conditions. The upregulation of hapR resulted in a prolonged culturable state of V. cholerae in artificial sea water at 4°C, whereas the mutation of hapR led to fast entry into the VBNC state. We also observed that different V. cholerae O1 natural isolates with distinct QS functions present a variety of abilities to maintain culturability during the transition to a VBNC state. The strain groups with higher or constitutive expression of QS genes exhibit a greater tendency to maintain the culturable state during VBNC induction than those lacking QS functional groups. In summary, HapR-mediated QS regulation is associated with the transition to the VBNC state in V. cholerae. HapR expression causes V. cholerae to resist VBNC induction and become dominant over competitors in changing environments.  相似文献   
987.
Forced copulation is an extreme form of sexual aggression that can affect the evolution of sex-specific anatomy, morphology, and behavior. To characterize mechanistic and evolutionary aspects of forced copulation, we artificially selected male fruit flies based on their ability to succeed in the naturally prevalent behavior of forced matings with newly eclosed (teneral) females. The low and high forced copulation lineages showed rapid divergence, with the high lineages ultimately showing twice the rates of forced copulation as the low lineages. While males from the high lineages spent more time aggressively pursuing and mounting teneral females, their behavior toward non-teneral and heterospecific females was similar to that of males from the low lineages. Males from the low and high lineages also showed similar levels of male-male aggression. This suggests little or no genetic correlations between sexual aggression and non-aggressive pursuit of females, and between male aggression toward females and males. Surprisingly however, males from the high lineages had twice as high mating success than males from the low lineages when allowed to compete for consensual mating with mature females. In further experiments, we found no evidence for trade-offs associated with high forced mating rates: males from the high lineages did not have lower longevity than males from the low lineages when housed with females, and four generations of relaxed selection did not lead to convergence in forced mating rates. Our data indicate complex interactions among forced copulation success and consensual mating behavior, which we hope to clarify in future genomic work.  相似文献   
988.
989.
990.
The jasmonic acid (JA) pathway plays crucial roles in plant defence against pathogens and herbivores. Rice stripe virus (RSV) is the type member of the genus Tenuivirus. It is transmitted by the small brown planthopper (SBPH) and causes damaging epidemics in East Asia. The role(s) that JA may play in the tripartite interaction against RSV, its host, and vector are poorly understood. Here, we found that the JA pathway was induced by RSV infection and played a defence role against RSV. The coat protein (CP) was the major viral component responsible for inducing the JA pathway. Methyl jasmonate treatment attracted SBPHs to feed on rice plants while a JA-deficient mutant was less attractive than wild-type rice. SBPHs showed an obvious preference for feeding on transgenic rice lines expressing RSV CP. Our results demonstrate that CP is an inducer of the JA pathway that activates plant defence against RSV while also attracting SBPHs to feed and benefitting viral transmission. This is the first report of the function of JA in the tripartite interaction between RSV, its host, and its vector.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号