首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11616篇
  免费   1060篇
  国内免费   1150篇
  2024年   38篇
  2023年   176篇
  2022年   375篇
  2021年   670篇
  2020年   474篇
  2019年   556篇
  2018年   524篇
  2017年   397篇
  2016年   524篇
  2015年   766篇
  2014年   923篇
  2013年   918篇
  2012年   1087篇
  2011年   981篇
  2010年   555篇
  2009年   537篇
  2008年   618篇
  2007年   531篇
  2006年   420篇
  2005年   332篇
  2004年   317篇
  2003年   268篇
  2002年   258篇
  2001年   186篇
  2000年   167篇
  1999年   154篇
  1998年   109篇
  1997年   97篇
  1996年   101篇
  1995年   73篇
  1994年   83篇
  1993年   59篇
  1992年   69篇
  1991年   72篇
  1990年   51篇
  1989年   34篇
  1988年   42篇
  1987年   23篇
  1986年   31篇
  1985年   31篇
  1984年   20篇
  1983年   26篇
  1982年   16篇
  1980年   14篇
  1979年   14篇
  1977年   11篇
  1975年   13篇
  1974年   12篇
  1973年   11篇
  1970年   11篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
181.
The hybrid bacterial foraging algorithm based on many-objective optimizer   总被引:1,自引:0,他引:1  
A new multi-objective optimized bacterial foraging algorithm - Hybrid Multi-Objective Optimized Bacterial Foraging Algorithm (HMOBFA) is presented in this article. The proposed algorithm combines the crossover-archives strategy and the life-cycle optimization strategy, look for the best method through research area. The crossover-archive strategy with an external archive and internal archive is assigned to different selection principles to focus on diversity and convergence separately. Additionally, according to the local landscape to satisfy population diversity and variability as well as avoiding redundant local searches, individuals can switch their states periodically throughout the colony lifecycle with the life-cycle optimization strategy. all of which may perform significantly well. The performance of the algorithm was examined with several standard criterion functions and compared with other classical multi-objective majorization methods. The examiner results show that the HMOBFA algorithm can achieve a significant enhancement in performance compare with other method and handles many-objective issues with solid complexity, convergence as well as diversity. The HMOBFA algorithm has been proven to be an excellent alternative to past methods for solving the improvement of many-objective problems.  相似文献   
182.
The rice stem borer, Chilo suppressalis, is one of the most damaging insect pests to rice production worldwide. Although C. suppressalis has been the focus of numerous studies examining cold tolerance and diapause, plant–insect interactions, pesticide targets and resistance, and the development of RNAi‐mediated pest management, the absence of a high‐quality genome has limited deeper insights. To address this limitation, we generated a draft C. suppressalis genome constructed from both Illumina and PacBio sequences. The assembled genome size was 824.35 Mb with a contig N50 of 307 kb and a scaffold N50 of 1.75 Mb. Hi‐C scaffolding assigned 99.2% of the bases to one of 29 chromosomes. Based on universal single‐copy orthologues (BUSCO), the draft genome assembly was estimated to be 97% complete and is predicted to encompass 15,653 protein‐coding genes. Cold tolerance is an extreme survival strategy found in animals. However, little is known regarding the genetic basis of the winter ecology of C. suppressalis. Here, we focused our orthologous analysis on those gene families associated with animal cold tolerance. Our finding provided the first genomic evidence revealing specific cold‐tolerant strategies in C. suppressalis, including those involved in glucose‐originated glycerol biosynthesis, triacylglycerol‐originated glycerol biosynthesis, fatty acid synthesis and trehalose transport‐intermediate cold tolerance. The high‐quality C. suppressalis genome provides a valuable resource for research into a broad range of areas in molecular ecology, and subsequently benefits developing modern pest control strategies.  相似文献   
183.
184.
Lipopeptides are produced by nonribosomal peptide synthetases (NRPSs) and contain diverse fatty acyl moieties that are major determinants of antibiotic potency. The lipid chains are incorporated into peptidyl backbones via lipoinitiation, a process comprising free fatty acid activation and the subsequent starter condensation domain (C1)‐catalyzed conjugation of fatty acyl moieties onto the aminoacyl substrates. Thus, a thorough understanding of lipoinitiation biocatalysts would significantly expand their potential to produce novel antibiotics. Here, biochemical assays, in silico analysis, and mutagenesis studies are used to ultimately identify the specific amino acid residues that control the fatty acyl substrate selectivity of C1 in lipopeptide A54145. In silico docking study has identified four candidate amino acids, and subsequent in vitro assays confirmed their functional contribution to the channel that controls substrate selectivity. Two engineered variants with single point mutations in C1 are found to alter the substrate selectivity toward nonnatural fatty acyl substrates. The detailed mechanistic insights into the catalytic contribution of C1 obtained from the present study will facilitate future NPRS biocatalyst efforts  相似文献   
185.
Photosynthetic generation of reducing power makes cyanobacteria an attractive host for biochemical reduction compared to cell‐free and heterotrophic systems, which require burning of additional resources for the supply of reducing equivalent. Here, using xylitol synthesis as an example, efficient uptake and reduction of xylose photoautotrophically in Synechococcus elongatus PCC7942 are demonstrated upon introduction of an effective xylose transporter from Escherichia coli (Ec‐XylE) and the NADPH‐dependent xylose reductase from Candida boidinii (Cb‐XR). Simultaneous activation of xylose uptake and matching of cofactor specificity enabled an average xylitol yield of 0.9 g g?1 xylose and a maximum productivity of about 0.15 g L?1 day?1 OD?1 with increased level of xylose supply. While long‐term cellular maintenance still appears challenging, high‐density conversion of xylose to xylitol using concentrated resting cell further pushes the titer of xylitol formation to 33 g L?1 in six days with 85% of maximum theoretical yield. While the results show that the unknown dissipation of xylose can be minimized when coupled to a strong reaction outlet, it remains to be the major hurdle hampering the yield despite the reported inability of cyanobacteria to metabolize xylose.  相似文献   
186.
Cypermethrin (CP) is widely used for controlling agricultural and indoor vermin. Previous studies have reported the stereoselective difference of CP in biological activities. However, little is known about their potential mechanisms between metabolic phenotypes and endocrine-disrupting effects. Herein, nuclear magnetic resonance (NMR)-based metabolomics combining metabolite identification and pathway analysis were applied to evaluate the stereoselective metabolic cdisorders induced by CP isomers in human adrenocortical carcinoma cells (H295R) culture medium. Then, gene expression levels related to disturbed metabolic pathways were assessed to verify according to metabolic phenotypes. Metabolomics profiles showed that [(S)-cyano(3-phenoxyphenyl)methyl](1R,3R)-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate [(1R,3RS)-CP] induced the most significant changes in metabolic phenotypes than did the other stereoisomers. There are 10 differential metabolites (isoleucine, valine, leucine, ethanol, alanine, acetate, aspartate, arginine, lactate, and glucose) as well as two significantly disturbed pathways, including “pyruvate metabolism” and “alanine, aspartate, and glutamate metabolism,” that were confirmed in H295R cells culture medium of (1R,3RS)-CP compared with other stereoisomers. Polymerase chain reaction (PCR) array also confirmed the results of metabolomics. Our results can help to understand the potential mechanisms between the isomer selectivity in metabolic phenotypes and endocrine-disrupting effects. Data provided here not only lend authenticity to the cautions issued by the scientists and researchers but also offer a solution for the balance between environment and political regulations.  相似文献   
187.
Xiang  Ping  Sun  Youwen  Fang  Zhiqing  Yan  Keqiang  Fan  Yidong 《Mammalian genome》2020,31(7-8):197-204
Mammalian Genome - Prostate cancer, the second most common cancer among male adults, affects millions globally. We sought to investigate the expression and contribution of Eukaryotic translation...  相似文献   
188.
Botrytis cinerea, the causal agent of the grey mould disease, developed resistance to multiple fungicides. However, the role of cell membrane in survival competition of B. cinerea upon quinone outside inhibitor (QoI) fungicide has not yet been elucidated. In this paper, the enhancement of cystamine, a transglutaminase inhibitor, on membrane integrity of B. cinerea was determined, and the effect of the enhancement on the sensitivity of B. cinerea to pyraclostrobin was investigated. The results showed that pyraclostrobin inhibited mycelial growth with EC50 as 1.122 and 3.042 μg/ml at 24 and 48 hr, respectively. In the treatment of 5 and 50 μg/ml pyraclostrobin, membrane integrity of B. cinerea was broken, causing high permeability, lipid peroxidation, flocculent and malformed surface with vague septum and abundant agglomerates inside and outside the mycelia. Cystamine even at 50 and 200 μg/ml had little inhibitory effect on mycelial growth. However, in presence of 50 or 200 μg/ml cystamine, the mycelia from pyraclostrobin treatment possessed a significantly reduced leakage, lower MDA content, and a revived fibrous and transparent surface. Meanwhile, SEM images showed that membrane integrity of the mycelia was significantly improved and the agglomerates were dramatically disappeared. Synergy assays further revealed that B. cinerea regained less sensitivity to pyraclostrobin inhibition. In conclusion, membrane integrity controls mycelia sensitivity and is required for survival competition of B. cinerea upon pyraclostrobin.  相似文献   
189.
Major depressive disorder takes at least 3 weeks for clinical anti‐depressants, such as serotonin selective reuptake inhibitors, to take effect, and only one‐third of patients remit. Ketamine, a kind of anaesthetic, can alleviate symptoms of major depressive disorder patients in a short time and is reported to be effective to treatment‐resistant depression patients. The rapid and strong anti‐depressant‐like effects of ketamine cause wide concern. In addition to ketamine, caloric restriction and sleep deprivation also elicit similar rapid anti‐depressant‐like effects. However, mechanisms about the rapid anti‐depressant‐like effects remain unclear. Elucidating the mechanisms of rapid anti‐depressant effects is the key to finding new therapeutic targets and developing therapeutic patterns. Therefore, in this review we summarize potential molecular and cellular mechanisms of rapid anti‐depressant‐like effects based on the pre‐clinical and clinical evidence, trying to provide new insight into future therapy.  相似文献   
190.
Swine acute diarrhea syndrome coronavirus (SADS‐CoV) is a novel coronavirus that is involved in severe diarrhea disease in piglets, causing considerable agricultural and economic loss in China. The emergence of this new coronavirus increases the importance of understanding SADS‐CoV as well as antivirals. Coronaviral proteases, including main proteases and papain‐like proteases (PLP), are attractive antiviral targets because of their essential roles in polyprotein processing and thus viral maturation. Here, we describe the biochemical and structural identification of recombinant SADS papain‐like protease 2 (PLP2) domain of nsp3. The SADS‐CoV PLP2 was shown to cleave nsp1 proteins and also peptides mimicking the nsp2|nsp3 cleavage site and also had deubiquitinating and deISGynating activity by in vitro assays. The crystal structure adopts an architecture resembling that of PLPs from other coronaviruses. We characterize both conserved and unique structural features likely directing the interaction of PLP2 with the substrates, including the tentative mapping of active site and other essential residues. These results provide a foundation for understanding the molecular basis of coronaviral PLPs' catalytic mechanism and for the screening and design of therapeutics to combat infection by SADS coronavirus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号