首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18113篇
  免费   1435篇
  国内免费   1648篇
  2024年   30篇
  2023年   202篇
  2022年   531篇
  2021年   1025篇
  2020年   671篇
  2019年   816篇
  2018年   784篇
  2017年   538篇
  2016年   769篇
  2015年   1144篇
  2014年   1367篇
  2013年   1423篇
  2012年   1709篇
  2011年   1499篇
  2010年   934篇
  2009年   837篇
  2008年   916篇
  2007年   811篇
  2006年   739篇
  2005年   686篇
  2004年   525篇
  2003年   480篇
  2002年   372篇
  2001年   298篇
  2000年   285篇
  1999年   276篇
  1998年   170篇
  1997年   158篇
  1996年   182篇
  1995年   139篇
  1994年   156篇
  1993年   99篇
  1992年   114篇
  1991年   110篇
  1990年   79篇
  1989年   72篇
  1988年   49篇
  1987年   55篇
  1986年   38篇
  1985年   28篇
  1984年   37篇
  1983年   18篇
  1982年   14篇
  1981年   9篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
942.
943.
944.
Luo GM  Qi DH  Zheng YG  Mu Y  Yan GL  Yang TS  Shen JC 《FEBS letters》2001,492(1-2):29-32
The free radicals generated from the iron containing system of xanthine oxidase and hypoxanthine (Fe-XO/HX) were directly detected by using spin trapping. It was found that not only superoxide anion (O(2)*-) and hydroxyl radical (OH*), but also alkyl or alkoxyl radicals (R*) were formed when saccharides such as glucose, fructose and sucrose were added into the Fe-XO/HX system. The generated amount of R* was dependent on the kind and concentration of saccharides added into the Fe-XO/HX system and no R* were detected in the absence of saccharides, indicating that there is an interaction between the saccharide molecules and the free radicals generated from the Fe-XO/HX system and saccharide molecules are essential for generating R* in the Fe-XO/HX system. It is expected that the toxicity of R* would be greater than of hydrophilic O(2)*- and OH* because they are liposoluble and their lives are longer and the active sites of biomolecules are closely related with lipophilic phase, thus they can damage cells more seriously than O(2)*- and OH*. The R* generated from the saccharide containing Fe-XO/HX can be effectively scavenged by selenium containing abzyme (Se-abzyme), indicating Se-abzyme is a promising antioxidant.  相似文献   
945.
Zheng YT  Chan WL  Chan P  Huang H  Tam SC 《FEBS letters》2001,496(2-3):139-142
Trichosanthin (TCS) is a type I ribosome-inactivating protein that has a wide range of pharmacological activities. The present study investigated the effectiveness of TCS on herpes simplex virus (HSV-1). The anti-viral activity and toxicity of TCS on Vero cells were measured. Results showed that the ED(50), TD(50) and the therapeutic indices were 38.5, 416.5 and 10.9 microg/ml, respectively. Anti-viral activity of TCS was substantially potentiated when it was used in conjunction with other anti-viral agents. The ED(50) of TCS was reduced 125-fold by acyclovir at a concentration of 0.001 microg/ml, which was practically devoid of significant anti-viral activity. Similarly, the ED(50) of TCS was reduced 100-fold by interferon-alpha2a at a concentration of 100 IU/ml. In conclusion, TCS is effective against HSV-1 and other anti-viral agents such as acyclovir or interferon can potentiate its action substantially.  相似文献   
946.
Bullous pemphigoid antigen 1 (BPAG1) is a member of the plakin family with cytoskeletal linker properties. Mutations in BPAG1 cause sensory neuron degeneration and skin fragility in mice. We have analyzed the BPAG1 locus in detail and found that it encodes different interaction domains that are combined in tissue-specific manners. These domains include an actin-binding domain (ABD), a plakin domain, a coiled coil (CC) rod domain, two different potential intermediate filament-binding domains (IFBDs), a spectrin repeat (SR)-containing rod domain, and a microtubule-binding domain (MTBD). There are at least three major forms of BPAG1: BPAG1-e (302 kD), BPAG1-a (615 kD), and BPAG1-b (834 kD). BPAG1-e has been described previously and consists of the plakin domain, the CC rod domain, and the first IFBD. It is the primary epidermal BPAG1 isoform, and its absence that is the likely cause of skin fragility in mutant mice. BPAG1-a is the major isoform in the nervous system and a homologue of the microtubule actin cross-linking factor, MACF. BPAG1-a is composed of the ABD, the plakin domain, the SR-containing rod domain, and the MTBD. The absence of BPAG1-a is the likely cause of sensory neurodegeneration in mutant mice. BPAG1-b is highly expressed in muscles, and has extra exons encoding a second IFBD between the plakin and SR-containing rod domains of BPAG1-a.  相似文献   
947.
The Fas death receptor plays a key role in the killing of target cells by NK cells and CTLs and in activation-induced cell death of mature T lymphocytes. These cytotoxic pathways are dependent on induction of Fas expression by cytokines such as TNF-alpha and IFN-gamma or by signals generated after TCR engagement. Although much of our knowledge of the Fas death pathway has been generated from murine studies, little is known about regulatory mechanisms important for murine Fas expression. To this end, we have molecularly cloned a region of the murine Fas promoter that is responsible for mediating TNF-alpha and PMA/PHA-induced expression. We demonstrate here that induction of Fas expression by both stimuli is critically dependent on two sites that associate with RelA-containing NF-kappaB complexes. To determine whether RelA and/or other NF-kappaB subunits are also important for regulating Fas expression in primary T cells, we used CD4 T cells from RelA(-/-), c-Rel(-/-), and p50(-/-) mice. Although proliferative responses were significantly impaired, expression of Fas and activation-induced cell death was unaffected in T cells obtained from these different mice. Importantly, we show that unlike fibroblasts, which consist primarily of RelA-containing NF-kappaB complexes, T cells have high levels of both RelA and c-Rel complexes, suggesting that Fas expression in T cells may be dependent on redundant functions of these NF-kappaB subunits.  相似文献   
948.
Cooperativity among the four subunits helps give rise to the remarkable voltage sensitivity of Shaker potassium channels, whose open probability changes tenfold for a 5-mV change in membrane potential. The cooperativity in these channels is thought to arise from a concerted structural transition as the final step in opening the channel. Recordings of single-channel ionic currents from certain other channel types, as well as our previous recordings from T442S mutant Shaker channels, however, display intermediate conductance levels in addition to the fully open and closed states. These sublevels might represent stepwise, rather than concerted, transitions in the final steps of channel activation. Here, we report a similar fine structure in the closing transitions of Shaker channels lacking the mutation. Describing the deactivation time course with hidden Markov models, we find that two subconductance levels are rapidly traversed during most closing transitions of chimeric, high conductance Shaker channels. The lifetimes of these levels are voltage-dependent, with maximal values of 52 and 22 micros at -100 mV, and the voltage dependences of transitions among these states suggest that they arise from equivalent conformational changes occurring in individual subunits. At least one subconductance level is found to be traversed in normal conductance Shaker channels. We speculate that voltage-dependent conformational changes in the subunits give rise to changes in a "pore gate" associated with the selectivity filter region of the channel, producing the subconductance states. As a control for the hidden Markov analysis, we applied the same procedures to recordings of the recovery from N-type inactivation in Shaker channels. These transitions are found to be instantaneous in comparison.  相似文献   
949.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) from platelets and mononuclear phagocytes mediate T cell functions through endothelial differentiation gene-encoded G protein-coupled receptors (Edg Rs) specific for LPA (Edg-2, -4, and -7) or S1P (Edg-1, -3, -5, -6, and -8). Jurkat leukemic T cells with the SV40 virus large T Ag (Jurkat-T cells) express Edg-3>-2>-4 Rs, as assessed by RT-semiquantitative PCR and Western blots with anti-Edg R mAbs. Jurkat-T cells expressing predominantly Edg-2 R (Jurkat-T-2 cells) and Edg-4 R (Jurkat-T-4 cells) were developed by cotransfection with the respective sense plasmids and a mixture of antisense plasmids for the other Edg Rs, and hygromycin selection. Migration of Jurkat-T-4 cells, but not Jurkat-T-2 cells, through a layer of Matrigel on a 5-um pore polycarbonate filter was stimulated up to 5-fold by 10(-9) to 10(-6) M LPA and by 30-300 ng/ml of anti-Edg-4 R Ab, but not anti-Edg-2 R Ab. LPA and anti-Edg-4 R Ab also enhanced by up to 4-fold the expression of matrix metalloproteinase by Jurkat-T-4 cells, but not Jurkat-T-2 cells, as assessed by cleavage of [(3)H]-type IV human collagen in the Matrigel. Enhancement of matrix metalloproteinase-dependent trans-Matrigel migration of Jurkat-T cells by the chemokine RANTES was suppressed by anti-Edg-2 R Abs, but was stimulated by anti-Edg-4 R Abs. The opposite effects of Edg-2 and Edg-4 LPA receptors on trans-Matrigel migration and some other T cell functions provide receptor-selective mechanisms for regulation of T cell recruitment and immune contributions.  相似文献   
950.
IL-15 is a powerful T cell growth factor (TCGF) with particular importance for the maintenance of CD8(+) T cells. Because costimulation blockade does not result in universal tolerance, we hypothesized that "escape" from costimulation blockade might represent a CD8(+) and IL-15/IL-15R(+)-dependent process. For this analysis, we have used an IL-15 mutant/Fcgamma2a protein, a potentially cytolytic protein that is also a high-affinity receptor site specific antagonist for the IL-15Ralpha receptor protein, as a therapeutic agent. The IL-15-related fusion protein was used as monotherapy or in combination with CTLA4/Fc in murine islet allograft models. As monotherapies, CTLA4/Fc and an IL-15 mutant/Fcgamma2a were comparably effective in a semiallogeneic model system, and combined treatment with IL-15 mutant/Fcgamma2a plus CTLA4/Fc produced universal permanent engraftment. In a fully MHC-mismatched strain combination known to be refractory to costimulation blockade treatment, combined treatment with both fusion proteins proved to be highly effective; >70% of recipients were tolerized. The analysis revealed that the IL-15 mutant/Fc treatment confers partial protection from both CD4(+) and CD8(+) T cell graft infiltration. In rejections occurring despite CTLA4/Fc treatment, concomitant treatment with the IL-15 mutant/Fcgamma2a protein blocked a CD8(+) T cell-dominated rejection processes. This protection was linked to a blunted proliferative response of alloreactive T cells as well silencing of CTL-related gene expression events. Hence, we have demonstrated that targeting the IL-15/IL-15R pathway represents a new and potent strategy to prevent costimulation blockade-resistant CD8(+) T cell-driven rejection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号