首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16725篇
  免费   1281篇
  国内免费   1256篇
  2024年   33篇
  2023年   204篇
  2022年   462篇
  2021年   963篇
  2020年   587篇
  2019年   787篇
  2018年   781篇
  2017年   572篇
  2016年   810篇
  2015年   1067篇
  2014年   1323篇
  2013年   1452篇
  2012年   1552篇
  2011年   1389篇
  2010年   857篇
  2009年   763篇
  2008年   856篇
  2007年   717篇
  2006年   580篇
  2005年   516篇
  2004年   424篇
  2003年   369篇
  2002年   271篇
  2001年   251篇
  2000年   230篇
  1999年   236篇
  1998年   158篇
  1997年   135篇
  1996年   122篇
  1995年   112篇
  1994年   105篇
  1993年   87篇
  1992年   103篇
  1991年   102篇
  1990年   53篇
  1989年   55篇
  1988年   42篇
  1987年   32篇
  1986年   22篇
  1985年   27篇
  1984年   23篇
  1983年   15篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Ubiquitination is vital for multiple cellular processes via dynamic modulation of proteins related to cell growth, proliferation, and survival. Of the ubiquitination system components, E3 ubiquitin ligases and deubiquitinases have the most prominent roles in modulating tumor metastasis. This review will briefly summarize the observations and underlying mechanisms of multiple E3 ubiquitin ligases and deubiquitinases to regulate tumor metastasis. Further, we will discuss the relationship and importance between ubiquitination components and tumor progression.  相似文献   
962.
Genomic instability plays a key role in the initiation and progression of colorectal cancer (CRC). Although cancer driver genes in CRC have been well characterized, identifying novel genes associated with carcinogenesis and treatment remains challenging because of tumor heterogeneity. Here, we analyzed the genomic alterations of 45 samples from CRC patients in northern China by whole-exome sequencing. In addition to the identification of six well-known CRC driver genes (APC, TP53, KRAS, FBXW7, PIK3CA, and PABPC), two tumor-related genes (MTCH2 and HSPA6) were detected, along with RRP7A and GXYLT1, which have not been previously linked to cancer. GXYLT1 was mutated in 40% (18/45) of the samples in our cohort. Functionally, GXYLT1 promoted migration and invasion in vitro and metastasis in vivo, while the GXYLT1S212* mutant induced significantly greater effect. Furthermore, both GXYLT1 and GXYLT1S212* interacted with ERK2. GXYLT1 induced metastasis via a mechanism involving the Notch and MAPK pathways, whereas the GXYLT1S212* mutant mainly promoted metastasis by activating the MAPK pathway. We propose that GXYLT1 acts as a novel metastasis-associated driver gene and GXYLT1S212* might serve as a potential indicator for therapies targeting the MAPK pathway in CRC.Subject terms: Cancer genomics, Colorectal cancer, Metastasis, Oncogenes, Cell signalling  相似文献   
963.
硅烷偶联剂的研究与应用   总被引:21,自引:0,他引:21  
硅烷偶联剂是应用最广的一类偶联剂。本文阐述了其结构特征、偶联机理与使用技术,着重综述了硅烷偶联剂的应用范围与具体应用效果,最后展望了硅烷偶联剂的发展方向。  相似文献   
964.
Mammalian cells utilize Akt‐dependent signaling to deploy intracellular Glut4 toward cell surface to facilitate glucose uptake. Low‐density lipoprotein receptor (LDLR) is the cargo receptor mediating endocytosis of apolipoprotein B‐containing lipoproteins. However, signaling‐controlled regulation of intracellular LDLR trafficking remains elusive. Here, we describe a unique amino acid stress response, which directs the deployment of intracellular LDLRs, causing enhanced LDL endocytosis, likely via Ca2+ and calcium/calmodulin‐dependent protein kinase II‐mediated signalings. This response is independent of induction of autophagy. Amino acid stress‐induced increase in LDL uptake in vitro is comparable to that by pravastatin. In vivo, acute AAS challenge for up to 72 h enhanced the rate of hepatic LDL uptake without changing the total expression level of LDLR. Reducing dietary amino acids by 50% for 2 to 4 weeks ameliorated high fat diet‐induced hypercholesterolemia in heterozygous LDLR‐deficient mice, with reductions in both LDL and VLDL fractions. We suggest that identification of signaling‐controlled regulation of intracellular LDLR trafficking has advanced our understanding of the LDLR biology, and may benefit future development of additional therapeutic strategies for treating hypercholesterolemia.  相似文献   
965.
ObjectivesEvidences have suggested that the metabolic function is the key regulator to the fate of MSCs, but its function in senescence of MSC and the underlying mechanism is unclear. Therefore, the purpose of this study was to investigate the metabolic activity of MSCs and its possible mechanism during aging.Materials and MethodsWe used the Seahorse XF24 Analyzer to understand OCR and ECAR in BMSCs and used RT‐PCR to analyze the gene expression of mitochondrial biogenesis and key enzymes in glycolysis. We analyzed BMSC mitochondrial activity by MitoTracker Deep Red and JC‐1 staining, and detected NAD+/NADH ratio and ATP levels in BMSCs. Microarray and proteomic analyses were performed to detect differentially expressed genes and proteins in BMSCs. The impact of aging on BMSCs through mitochondrial electron transport chain (ETC) was evaluated by Rotenone and Coenzyme Q10.ResultsOur results demonstrated that the oxidative phosphorylation and glycolytic activity of BMSCs in aged mice were significantly decreased when compared with young mice. BMSCs in aged mice had lower mitochondrial membrane potential, NAD+/NADH ratio, and ATP production than young mice. FABP4 may play a key role in BMSC senescence caused by fatty acid metabolism disorders.ConclusionsTaken together, our results indicated the dysfunction of the metabolic activity of BMSCs in aged mice, which would play the important role in the impaired biological properties. Therefore, the regulation of metabolic activity may be a potential therapeutic target for enhancing the regenerative functions of BMSCs.  相似文献   
966.
1. Colony-stimulating factor (CSF-1) was isolated from a large volume of fresh normal human urine by 5 steps of purification and enrichment. 2. The purification factor is 100,000 fold and the purified compound exhibits a 2.16 x 10(7) U/mg of protein sp. act. 3. The isolated CSF-1 is a sialoglycoprotein with 41.5% of carbohydrate. The almost complete removal of this carbohydrate moiety (up to 91%) was achieved by incubation with trifluoromethane sulfonic acid. 4. The deglycosylated CSF-1 (DG-CSF-1) possesses an apparent Mr 38,000 compared to native CSF-1 with an initial Mr 57,000 (Goa et al., 1988). 5. The features of the interaction of radio-iodinated [125I]CSF-1 with single cell suspensions from various human tissues (bone marrow, spleen, blood, peritoneal cavity, alveolar lavage, lymph node and thymus), were studied. 6. The binding activity of peritoneal macrophages was the highest among the cells examined and erythrocytes, thymus and blood granulocytes showed no CSF-1 binding. 7. On incubation with [125I]CSF-1 at 0 degrees C, cellular binding of [125I]CSF-1 reached a stable maximum within 16 hr. This is in contrast to the association behaviour at higher temperature. 8. At 37 degrees C, cellular associated [125I]CSF-1 levels reached, within 90 min, an unstable maximum which was up to 10 times less than that occurring under the same conditions at 0 degree C. From the Scatchard plot analysis, we obtained the affinity constant and the number of receptor(s). 9. The binding site is sensitive to trypsin. 10. The receptor alone, (labelled by cross-linking to [125I]CSF-1 with di-succinylimidyl-suberate), is a polypeptide with an approx. Mr 110,000. 11. Our results showed that the receptor of CSF-1 is a tyrosin-kinase.  相似文献   
967.
Host cellular receptors play key roles in the determination of virus tropism and pathogenesis.However,little is known about SARS-CoV-2 host receptors with the e...  相似文献   
968.
ObjectivesThe rats are crucial animal models for the basic medical researches. Rat embryonic stem cells (ESCs), which are widely studied, can self‐renew and exhibit pluripotency in long‐term culture, but the mechanism underlying how they exit pluripotency remains obscure. To investigate the key modulators on pluripotency exiting in rat ESCs, we perform genome‐wide screening using a unique rat haploid system.Materials and MethodsRat haploid ESCs (haESCs) enable advances in the discovery of unknown functional genes owing to their homozygous and pluripotent characteristics. REX1 is a sensitive marker for the naïve pluripotency that is often utilized to monitor pluripotency exit, thus rat haESCs carrying a Rex1‐GFP reporter are used for genetic screening. Genome‐wide mutations are introduced into the genomes of rat Rex1‐GFP haESCs via piggyBac transposon, and differentiation‐retarded mutants are obtained after random differentiation selection. The exact mutations are elucidated by high‐throughput sequencing and bioinformatic analysis. The role of candidate mutation is validated in rat ESCs by knockout and overexpression experiments, and the phosphorylation of ERK1/2 (p‐ERK1/2) is determined by western blotting.ResultsHigh‐throughput sequencing analysis reveals numerous insertions related to various pathways affecting random differentiation. Thereafter, deletion of Thop1 (one candidate gene in the screened list) arrests the differentiation of rat ESCs by inhibiting the p‐ERK1/2, whereas overexpression of Thop1 promotes rat ESCs to exit from pluripotency.ConclusionsOur findings provide an ideal tool to study functional genomics in rats: a homozygous haploid system carrying a pluripotency reporter that facilitates robust discovery of the mechanisms involved in the self‐renewal or pluripotency of rat ESCs.

Differentiation of pluripotent rat embryonic stem cells (ESCs) in vitro is difficult to achieve for unknown mechanisms. Rat haploid ESCs (haESCs) have been validated as a powerful tool to target unknown functional genes and pathways based on homozygous genetic screening. Xu et al. utilized Rex1‐GFP labelled‐rat haESCs to conduct genome‐scale screening of genes modulating pluripotency exiting. Validation experiments showed that Thop1 (one of the screened out genes) played very important roles in the random differentiation of rat ESCs in vitro via modulating phosphorylation of ERK.  相似文献   
969.
Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor. The unregulated expression of Claudin-4 (CLDN4) plays an important role in tumor progression. However, the biological role of CLDN4 in GBM is still unknown. This study aimed to determine whether CLDN4 mediates glioma malignant progression, if so, it would further explore the molecular mechanisms of carcinogenesis. Our results revealed that CLDN4 was significantly upregulated in glioma specimens and cells. The inhibition of CLND4 expression could inhibit mesenchymal transformation, cell invasion, cell migration and tumor growth in vitro and in vivo. Moreover, combined with in vitro analysis, we found that CLDN4 can modulate tumor necrosis factor-α (TNF-α) signal pathway. Meanwhile, we also validated that the transforming growth factor-β (TGF-β) signal pathway can upregulate the expression of CLDN4, and promote the invasion ability of GBM cells. Conversely, TGF-β signal pathway inhibitor ITD-1 can downregulate the expression of CLDN4, and inhibit the invasion ability of GBM cells. Furthermore, we found that TGF-β can promote the nuclear translocation of CLDN4. In summary, our findings indicated that the TGF-β/CLDN4/TNF-α/NF-κB signal axis plays a key role in the biological progression of glioma. Disrupting the function of this signal axis may represent a new treatment strategy for patients with GBM.Subject terms: CNS cancer, Epithelial-mesenchymal transition  相似文献   
970.
The present study was performed to explore whether and how impaired autophagy could modulate calcium/calmodulin-dependent protein kinase II (CAMKII)-regulated necrosis in the pathogenesis of acute pancreatitis (AP). Wistar rats and AR42J cells were used for AP modeling. When indicated, genetic regulation of CAMKII or ATG7 was performed prior to AP induction. AP-related necrotic injury was positively regulated by the incubation level of CAMKII. ATG7 positively modulated the level of CAMKII and necrosis following AP induction, indicating that there might be a connection between impaired autophagy and CAMKII-regulated necrosis in the pathogenesis of AP. microRNA (miR)-30b-5p was predicted and then verified as the upstream regulator of CAMKII mRNA in our setting of AP. Given that the level of miR-30b-5p was negatively correlated with the incubation levels of ATG7 after AP induction, a rescue experiment was performed and indicated that the miR-30b-5p mimic compromised ATG7 overexpression-induced upregulation of CAMKII-regulated necrosis after AP induction. In conclusion, our results indicate that ATG7-enhanced impaired autophagy exacerbates AP by promoting regulated necrosis via the miR-30b-5p/CAMKII pathway.Subject terms: Cytokines, Acute inflammation  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号