首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19800篇
  免费   1896篇
  国内免费   656篇
  2023年   121篇
  2022年   255篇
  2021年   484篇
  2020年   332篇
  2019年   428篇
  2018年   480篇
  2017年   357篇
  2016年   602篇
  2015年   983篇
  2014年   1081篇
  2013年   1272篇
  2012年   1480篇
  2011年   1452篇
  2010年   955篇
  2009年   749篇
  2008年   1014篇
  2007年   952篇
  2006年   903篇
  2005年   827篇
  2004年   757篇
  2003年   720篇
  2002年   646篇
  2001年   551篇
  2000年   488篇
  1999年   454篇
  1998年   220篇
  1997年   205篇
  1996年   189篇
  1995年   169篇
  1994年   153篇
  1993年   121篇
  1992年   245篇
  1991年   246篇
  1990年   204篇
  1989年   216篇
  1988年   189篇
  1987年   152篇
  1986年   144篇
  1985年   168篇
  1984年   123篇
  1983年   98篇
  1982年   90篇
  1981年   97篇
  1979年   109篇
  1978年   91篇
  1977年   71篇
  1976年   68篇
  1975年   88篇
  1974年   89篇
  1973年   81篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The aggregation of the 37‐amino acid polypeptide human islet amyloid polypeptide (hIAPP), as either insoluble amyloid or as small oligomers, appears to play a direct role in the death of human pancreatic β‐islet cells in type 2 diabetes. hIAPP is considered to be one of the most amyloidogenic proteins known. The quick aggregation of hIAPP leads to the formation of toxic species, such as oligomers and fibers, that damage mammalian cells (both human and rat pancreatic cells). Whether this toxicity is necessary for the progression of type 2 diabetes or merely a side effect of the disease remains unclear. If hIAPP aggregation into toxic amyloid is on‐path for developing type 2 diabetes in humans, islet amyloid polypeptide (IAPP) aggregation would likely need to play a similar role within other organisms known to develop the disease. In this work, we compared the aggregation potential and cellular toxicity of full‐length IAPP from several diabetic and nondiabetic organisms whose aggregation propensities had not yet been determined for full‐length IAPP.  相似文献   
992.
993.
How abiotic and biotic factors constrain distribution limits at the harsh and benign edges of species ranges is hotly debated, partly because macroecological experiments testing the proximate causes of distribution limits are scarce. It has long been recognized – at least since Darwin’s On the Origin of Species – that a harsh climate strengthens competition and thus sets species range limits. Using thorough field manipulations along a large elevation gradient, we show the mechanisms by which temperature determines competition type, resulting in a transition from interference to exploitative competition from the lower to the upper elevation limits in burying beetles (Nicrophorus nepalensis). This transition is an example of Darwin’s classic hypothesis that benign climates favor direct competition for highly accessible resources while harsh climates result in competition through resources of high rivalry. We propose that identifying the properties of these key resources will provide a more predictive framework to understand the interplay between biotic and abiotic factors in determining geographic range limits.  相似文献   
994.
In this study, we investigated the microbially mediated transformation of labile Synechococcus-derived DOM to RDOM using a 60-day experimental incubation system. Three phases of TOC degradation activity (I, II and III) were observed following the addition of Synechococcus-derived DOM. The phases were characterized by organic carbon consumption rates of 8.77, 1.26 and 0.16 μmol L−1 day−1, respectively. Excitation emission matrix analysis revealed the presence of three FDOM components including tyrosine-like, fulvic acid-like, and humic-like molecules. The three components also exhibited differing biological availabilities that could be considered as labile DOM (LDOM), semi-labile DOM (SLDOM) and RDOM, respectively. DOM molecular composition was also evaluated using FT-ICR MS. Based on differing biological turnover rates and normalized intensity values, a total of 1704 formulas were identified as candidate LDOM, SLDOM and RDOM molecules. Microbial transformation of LDOM to RDOM tended to proceed from high to low molecular weight, as well as from molecules with high to low double bond equivalent (DBE) values. Relatively higher aromaticity was observed in the formulas of RDOM molecules relative to those of LDOM molecules. FDOM components provide valuable proxy information to investigate variation in the bioavailability of DOM. These results suggest that coordinating fluorescence spectroscopy and FT-ICR MS of DOM, as conducted here, is an effective strategy to identify and characterize LDOM, SLDOM and RDOM molecules in incubation experiments emulating natural systems. The results described here provide greater insight into the metabolism of phytoplankton photosynthate by heterotrophic bacteria in marine environments.  相似文献   
995.
Mycobacterium avium, a slow‐growing nontuberculous mycobacterium, causes fever, diarrhoea, loss of appetite, and weight loss in immunocompromised people. We have proposed that endoplasmic reticulum (ER) stress‐mediated apoptosis plays a critical role in removing intracellular mycobacteria. In the present study, we investigated the role of the regulated IRE1‐dependent decay (RIDD) pathway in macrophages during M. avium infection based on its role in the regulation of gene expression. The inositol‐requiring enzyme 1 (IRE1)/apoptosis signal‐regulating kinase 1 (ASK1)/c‐Jun N‐terminal kinase (JNK) signalling pathway was activated in macrophages after infection with M. avium. The expression of RIDD‐associated genes, such as Bloc1s1 and St3gal5, was decreased in M. avium‐infected macrophages. Interestingly, M. avium‐induced apoptosis was significantly suppressed by pretreatment with irestatin (inhibitor of IRE1α) and 4μ8c (RIDD blocker). Macrophages pretreated with N‐acetyl cysteine (NAC) showed decreased levels of reactive oxygen species (ROS), IRE1α, and apoptosis after M. avium infection. The expression of Bloc1s1 and St3gal5 was increased in NAC‐pretreated macrophages following infection with M. avium. Growth of M. avium was significantly increased in irestatin‐, 4μ8c‐, and NAC‐treated macrophages compared with the control. The data indicate that the ROS‐mediated ER stress response induces apoptosis of M. avium‐infected macrophages by activating IRE1α‐RIDD. Thus, activation of IRE1α suppresses the intracellular survival of M. avium in macrophages.  相似文献   
996.
Mammalian reproductive processes involve spermatogenesis, which occurs in the testis, and fertilization, which takes place in the female genital tract. Fertilization is a successive, multistep, and extremely complicated event that usually includes sperm survival in the uterus, sperm migration through the uterotubal junction (UTJ) and the oviduct, sperm penetration through the cumulus cell layer and the zona pellucida, and sperm–egg fusion. There may be a complex molecular mechanism to ensure that the above processes run smoothly. Previous studies have discovered essential factors for these fertilization steps through in vitro fertilization experiments. However, recent gene disruption approaches in mice have revealed that many of the factors previously described as important for fertilization are largely dispensable in gene‐knockout animals, and some previously unknown factors are emerging. As a result, the molecular mechanisms of fertilization, especially sperm migration from the uterus into the oviduct, have recently been revised by the emergence of genetically modified animals. In this review, we only focus on and update the essential genes for sperm migration through the UTJ and describe recent advances in our knowledge of the basis of mammalian sperm migration.  相似文献   
997.
998.
比较广西北部湾石莼(Ulva lactuca L.)、海带(Laminaria japonica)、裙带菜(Undaria pinnatifida Surin-gar)、紫菜(Porphyra)的单糖组成及抗氧化活性的差异,揭示多糖结构与其体外抗氧化活性的关系。利用PMP柱前衍生化HPLC分析海藻多糖的单糖组成,采用羟自由基清除试验、超氧阴离子自由基清除试验及DPPH自由基清除试验指征其体外抗氧化活性,结果表明,4种海藻多糖的单糖组成在主成分空间分布离散,石莼及紫菜主要由葡萄糖组成,海带主要由甘露糖组成,裙带菜则主要由半乳糖组成;其体外抗氧化活性存在显著差异,裙带菜多糖对DPPH的清除能力(半抑制浓度IC50值为0. 56±0. 02 mg/mL)显著高于其他3种海藻多糖;石莼、裙带菜与海带对羟自由基均有较强的清除活性,而紫菜多糖对羟自由基的清除能力较差(IC50值为26. 59±0. 98mg/mL);石莼与裙带菜对超氧阴离子的清除活性较强,显著高于海带与紫菜,其中石莼显著高于裙带菜,IC50值分别为1. 61±0. 17、2. 73±0. 06 mg/mL。相关性分析及冗余分析结果表明,对抗氧化活性影响较为显著的因子为葡萄糖(Glc)、核糖(Rib)、木糖(Xyl)(P <0. 01)。  相似文献   
999.
Resveratrol (Res) has been reported to be able to improve oocyte vitrification because of its antioxidative properties. The objective of this study was to further assess the positive effect of Res addition on the developmental potential of vitrified mouse oocytes from the perspective of epigenetic alterations. First, 2 μM Res was chosen as the optimal concentration on the basis of its effects on survival and its antioxidative properties. We found that Res addition significantly promoted fertilization (63.8% vs. 42.9%) and blastocyst formation (68.3% vs. 50.2%) after oocyte vitrification. The quality of the derived blastocysts was also higher after Res treatment. Regarding epigenetic aspects, the expression of the important deacetylase SIRT1 was found to decrease significantly upon vitrification, but it was rescued by Res. The abnormal levels of H3K9 acetylation and DNA methylation in vitrified oocytes were restored by Res addition. Moreover, the expression of several imprinted genes was affected by oocyte vitrification. Among them, abnormal Gtl2 and Peg3 expression levels were restored by Res addition. Therefore, the methylation of their imprinted control regions (ICRs) was examined. Surprisingly, the abnormal patterns of Gtl2 and Peg3 methylation in blastocysts developed from vitrified oocytes were both restored by Res addition. Finally, the full‐term embryonic development showed that the birth rate was improved significantly by Res addition (56.2% vs. 38.1%). Collectively, Res was beneficial for the pre‐ and postimplantation embryonic development. Except for the antioxidative activity, Res also played a role in the correction of some abnormal epigenetic modifications caused by oocyte vitrification.  相似文献   
1000.
Cyanobacteria are of great importance to Earth's ecology. Due to their capability in photosynthesis and C1 metabolism, they are ideal microbial chassis that can be engineered for direct conversion of carbon dioxide and solar energy into biofuels and biochemicals. Facilitated by the elucidation of the basic biology of the photoautotrophic microbes and rapid advances in synthetic biology, genetic toolkits have been developed to enable implementation of nonnatural functionalities in engineered cyanobacteria. Hence, cyanobacteria are fast becoming an emerging platform in synthetic biology and metabolic engineering. Herein, the progress made in the synthetic biology toolkits for cyanobacteria and their utilization for transforming cyanobacteria into microbial cell factories for sustainable production of biofuels and biochemicals is outlined. Current techniques in heterologous gene expression, strategies in genome editing, and development of programmable regulatory parts and modules for engineering cyanobacteria towards biochemical production are discussed and prospected. As cyanobacteria synthetic biology is still in its infancy, apart from the achievements made, the difficulties and challenges in applying and developing genetic toolkits in cyanobacteria for biochemical production are also evaluated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号