首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2418篇
  免费   229篇
  国内免费   202篇
  2024年   3篇
  2023年   27篇
  2022年   56篇
  2021年   120篇
  2020年   85篇
  2019年   112篇
  2018年   98篇
  2017年   82篇
  2016年   114篇
  2015年   141篇
  2014年   185篇
  2013年   186篇
  2012年   206篇
  2011年   151篇
  2010年   111篇
  2009年   121篇
  2008年   120篇
  2007年   114篇
  2006年   87篇
  2005年   70篇
  2004年   86篇
  2003年   86篇
  2002年   81篇
  2001年   63篇
  2000年   33篇
  1999年   34篇
  1998年   25篇
  1997年   21篇
  1996年   20篇
  1995年   14篇
  1994年   32篇
  1993年   15篇
  1992年   34篇
  1991年   21篇
  1990年   12篇
  1989年   17篇
  1988年   9篇
  1987年   10篇
  1986年   6篇
  1985年   8篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1980年   6篇
  1979年   4篇
  1978年   2篇
  1975年   3篇
  1969年   1篇
  1967年   1篇
排序方式: 共有2849条查询结果,搜索用时 31 毫秒
121.
Liu  Xi  Ding  Li  Yuan  Jing  Liao  Jian  Duan  Lian  Wang  Wenfei  Tan  Weiguo  Yu  Weiye  Zhou  Boping  Chen  Xinchun  Yang  Zheng 《中国病毒学》2019,34(3):334-337
<正>Dear Editor,H7 N9 is a recently identified subtype of influenza A virus that caused a major outbreak in humans in China in 2013.According to the latest data provided by the Chinese Center for Disease Control and Prevention(http://www.moh.gov.cn/zwgk/yqbb3/ejlist.shtml, updated on October 31, 2018),the mortality rate of H7 N9 infections in China amounts to  相似文献   
122.
Members of the Chenopodiaceae are the most dominant elements in the central Asian desert. The different genera and species within this family are common in desert vegetation types. Should it prove possible to link pollen types in this family to specific desert vegetation, it would be feasible to trace vegetation successions in the geological past. Nevertheless, the morphological similarity of pollen grains in the Chenopodiaceae rarely permits identification at the generic level. Although some pollen classifications of Chenopodiaceae have been proposed, none of them tried to link pollen types to specific desert vegetation types in order to explore their ecological significance. Based on the pollen morphological characters of 13 genera and 24 species within the Chenopodiaceae of eastern central Asia, we provide a new pollen classification of this family with six pollen types and link them to those plant communities dominated by Chenopodiaceae, for example, temperate dwarf semi‐arboreal desert (Haloxylon type), temperate succulent halophytic dwarf semi‐shrubby desert (Suaeda, Kalidium, and Atriplex types), temperate annual graminoid desert (Kalidium type), temperate semi‐shrubby and dwarf semi‐shrubby desert (Kalidium, Iljini, and Haloxylon types), and alpine cushion dwarf semi‐shrubby desert (Krascheninnikovia type). These findings represent a new approach for detecting specific desert vegetation types and deciphering ecosystem evolution in eastern central Asia.  相似文献   
123.
124.
Zygotic genome activation (ZGA) is one of the most critical events at the beginning of mammalian preimplantation embryo development (PED). The mechanisms underlying mouse ZGA remain unclear although it has been widely studied. In the present study, we identified that tricho-rhino-phalangeal syndrome 1 (TRPS1), an atypical GATA family member, is an important factor for ZGA in mouse PED. We found that the Trps1 mRNA level peaked at the one-cell stage while TRPS1 protein did so at the two/four-cell stage. Knockdown of Trps1 by the microinjection of Trps1 siRNA reduced the developmental rate of mouse preimplantation embryos by approximately 30%, and increased the expression of ZGA marker genes MuERV-L and Zscan4d via suppressing the expression of major histone markers H3K4me3 and H3K27me3. Furthermore, Trps1 knockdown decreased the expression of Sox2 but increased Oct4 expression. We conclude that TRPS1 may be indispensable for zygotic genome activation during mouse PED.  相似文献   
125.
Senescence is a tumor suppressor program characterized by a stable growth arrest while maintaining cell viability. Senescence-associated ribogenesis defects (SARD) have been shown to regulate senescence through the ability of the ribosomal protein S14 (RPS14 or uS11) to bind and inhibit the cyclin-dependent kinase 4 (CDK4). Here we report another ribosomal protein that binds and inhibits CDK4 in senescent cells: L22 (RPL22 or eL22). Enforcing the expression of RPL22/eL22 is sufficient to induce an RB and p53-dependent cellular senescent phenotype in human fibroblasts. Mechanistically, RPL22/eL22 can interact with and inhibit CDK4-Cyclin D1 to decrease RB phosphorylation both in vitro and in cells. Briefly, we show that ribosome-free RPL22/eL22 causes a cell cycle arrest which could be relevant during situations of nucleolar stress such as cellular senescence or the response to cancer chemotherapy.  相似文献   
126.
Soybean cyst nematode (SCN, Heterodera glycines) is a major pest of soybean that is spreading across major soybean production regions worldwide. Increased SCN virulence has recently been observed in both the United States and China. However, no study has reported a genome assembly for H. glycines at the chromosome scale. Herein, the first chromosome‐level reference genome of X12, an unusual SCN race with high infection ability, is presented. Using whole‐genome shotgun (WGS) sequencing, Pacific Biosciences (PacBio) sequencing, Illumina paired‐end sequencing, 10X Genomics linked reads and high‐throughput chromatin conformation capture (Hi‐C) genome scaffolding techniques, a 141.01‐megabase (Mb) assembled genome was obtained with scaffold and contig N50 sizes of 16.27 Mb and 330.54 kilobases (kb), respectively. The assembly showed high integrity and quality, with over 90% of Illumina reads mapped to the genome. The assembly quality was evaluated using Core Eukaryotic Genes Mapping Approach and Benchmarking Universal Single‐Copy Orthologs. A total of 11,882 genes were predicted using de novo, homolog and RNAseq data generated from eggs, second‐stage juveniles (J2), third‐stage juveniles (J3) and fourth‐stage juveniles (J4) of X12, and 79.0% of homologous sequences were annotated in the genome. These high‐quality X12 genome data will provide valuable resources for research in a broad range of areas, including fundamental nematode biology, SCN–plant interactions and co‐evolution, and also contribute to the development of technology for overall SCN management.  相似文献   
127.
128.
The mechanisms underpinning forest biodiversity‐ecosystem function relationships remain unresolved. Yet, in heterogeneous forests, ecosystem function of different strata could be associated with traits or evolutionary relationships differently. Here, we integrate phylogenies and traits to evaluate the effects of elevational diversity on above‐ground biomass across forest strata and spatial scales. Community‐weighted means of height and leaf phosphorous concentration and functional diversity in specific leaf area exhibited positive correlations with tree biomass, suggesting that both positive selection effects and complementarity occur. However, high shrub biomass is associated with greater dissimilarity in seed mass and multidimensional trait space, while species richness or phylogenetic diversity is the most important predictor for herbaceous biomass, indicating that species complementarity is especially important for understory function. The strength of diversity‐biomass relationships increases at larger spatial scales. We conclude that strata‐ and scale‐ dependent assessments of community structure and function are needed to fully understand how biodiversity influences ecosystem function.  相似文献   
129.
Magnoliaceae, an assemblage of early diverged angiosperms, comprises two subfamilies, speciose Magnolioideae with approximately 300 species in varying numbers of genera and monogeneric Liriodendroideae with two species in Liriodendron L. This family occupies a pivotal phylogenetic position with important insights into the diversification of early angiosperms, and shows intercontinentally disjunct distribution patterns between eastern Asia and the Americas. Widespread morphological homogeneity and slow substitution rates in Magnolia L. s.l. resulted in poorly supported phylogenetic relationships based on morphology or molecular evidence, which hampers our understanding of the genus’ temporal and spacial evolution. Here, based on the newly generated genome skimming data for 48 Magnolia s.l. species, we produced robust Magnolia phylogenies using genome-wide markers from both plastid genomes and single nucleotide polymorphism data. Contrasting the plastid and nuclear phylogenies revealed extensive cytonuclear conflicts in both shallow and deep relationships. ABBA-BABA and PhyloNet analyses suggested hybridization occurred within sect. Yulania, and sect. Magnolia, which is in concordance with the ploidy level of the species in these two sections. Divergence time estimates and biogeographic reconstruction indicated that the timing of the three tropical Magnolia disjunctions coincided with the mid-Eocene cooling climate and/or late Eocene climate deterioration, and two temperate disjunctions occurred much later, possibly during the warm periods of the Miocene, hence supporting the boreotropical flora concept of Magnolia s.l.  相似文献   
130.
Inflammatory bowel disease (IBD) includes Crohn’s disease and ulcerative colitis and is an idiopathic, chronic inflammatory disease of the colonic mucosa. The occurrence of IBD, causes irreversible damage to the colon and increases the risk of carcinoma. The routine clinical treatment of IBD includes drug treatment, endoscopic treatment and surgery. The vast majority of patients are treated with drugs and biological agents, but the complete cure of IBD is difficult. Mesenchymal stem cells (MSCs) have become a new type of cell therapy for the treatment of IBD due to their immunomodulatory and nutritional functions, which have been confirmed in many clinical trials. This review discusses some potential mechanisms of MSCs in the treatment of IBD, summarizes the experimental results, and provides new insights to enhance the therapeutic effects of MSCs in future applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号