首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7841篇
  免费   663篇
  国内免费   7篇
  2023年   19篇
  2022年   71篇
  2021年   122篇
  2020年   63篇
  2019年   111篇
  2018年   153篇
  2017年   113篇
  2016年   238篇
  2015年   364篇
  2014年   425篇
  2013年   438篇
  2012年   551篇
  2011年   559篇
  2010年   352篇
  2009年   331篇
  2008年   450篇
  2007年   433篇
  2006年   393篇
  2005年   398篇
  2004年   399篇
  2003年   349篇
  2002年   313篇
  2001年   303篇
  2000年   242篇
  1999年   214篇
  1998年   77篇
  1997年   79篇
  1996年   58篇
  1995年   58篇
  1994年   37篇
  1993年   27篇
  1992年   77篇
  1991年   83篇
  1990年   50篇
  1989年   54篇
  1988年   46篇
  1987年   44篇
  1986年   32篇
  1985年   35篇
  1984年   33篇
  1982年   20篇
  1981年   17篇
  1979年   19篇
  1978年   22篇
  1977年   23篇
  1976年   24篇
  1974年   24篇
  1973年   19篇
  1971年   20篇
  1970年   17篇
排序方式: 共有8511条查询结果,搜索用时 109 毫秒
891.
Phosphatidylcholine (PC)-specific phospholipase D (PC-PLD) and phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) activities have been detected in Uronema marinum. Partial purification of PC-PLC revealed that two distinct forms of PC-PLC (named as mPC-PLC and cPC-PLC) were existed in membrane and cytosol fractions. The two PC-PLC enzymes showed the preferential hydrolyzing activity for PC with specific activity of 50.4 for mPC-PLC and 28.3 pmol/min/mg for cPC-PLC, but did not hydrolyze phosphatidylinositol or phosphatidylethanolamine. However, the biochemical characteristics and physiological roles of both enzymes were somewhat different. mPC-PLC had a pH optimum in the acidic region at around, pH 6.0, and required approximately 0.4 mM Ca2+ and 2.5 mM Mg2+ for maximal activity. cPC-PLC had a pH optimum in the neutral region at around, pH 7.0, and required 1.6 mM Ca2+ and 2.5 mM Mg2+ for maximal activity. cPC-PLC, but not mPC-PLC, showed a dose-dependent inhibitory effect on the luminal-enhanced chemiluminescence (CL) responses and the viability of zymosan-stimulated phagocytes of olive flounder, indicating that cPC-PLC may contribute to the parasite evasion against the host immune response. Our results suggest that U. marinum contains PC-PLD as well as two enzymatically distinct PC-PLC enzymes, and that mPC-PLC may play a role in the intercellular multiplication of U. marinum and cPC-PLC acts as a virulence factor, serving to actively disrupt the host defense mechanisms.  相似文献   
892.
Chow KY  Yeung YS  Hon CC  Zeng F  Law KM  Leung FC 《FEBS letters》2005,579(30):6699-6704
The pro-apoptotic properties of severe acute respiratory syndrome coronavirus (SARS-CoV) structural proteins were studied in vitro. By monitoring apoptosis indicators including chromatin condensation, cellular DNA fragmentation and cell membrane asymmetry, we demonstrated that the adenovirus-mediated over-expression of SARS-CoV spike (S) protein and its C-terminal domain (S2) induce apoptosis in Vero E6 cells in a time- and dosage-dependent manner, whereas the expression of its N-terminal domain (S1) and other structural proteins, including envelope (E), membrane (M) and nucleocapsid (N) protein do not. These findings suggest a possible role of S and S2 protein in SARS-CoV induced apoptosis and the molecular pathogenesis of SARS.  相似文献   
893.
Two targeted chromogenic octapeptide combinatorial libraries, comprised of 38 pools each containing 361 different peptides, were used to analyze the enzyme/substrate interactions of five plasmepsins. The first library (P1 library) was based on a good synthetic aspartic peptidase substrate [Westling, J., Cipullo, P., Hung, S. H., Saft, H., Dame, J. B., and Dunn, B. M. (1999) Protein Sci. 8, 2001-2009; Scarborough, P. E., and Dunn, B. M. (1994) Protein Eng. 7, 495-502] and had the sequence Lys-Pro-(Xaa)-Glu-P1*Nph-(Xaa)-Leu. The second library (P1' library) incorporated results with the plasmepsins from the first library and had the sequence Lys-Pro-Ile-(Xaa)-Nph*P1'-Gln-(Xaa). In both cases, P1 and P1' were fixed residues for a given peptide pool, where Nph was a para-nitrophenylalanine chromogenic reporter and Xaa was a mixture of 19 different amino acids. Kinetic assays monitoring the rates of cleavage of these libraries revealed the optimal P1 and P1' residues for the five plasmepsins as hydrophobic substitutions. Extended specificity preferences were obtained utilizing liquid chromatography-mass spectrometry (LC-MS) to analyze the cleavage products produced by enzyme-catalyzed digestion of the best pools of each peptide library. LC-MS analysis of the P1-Phe and P1'-Phe pools revealed the favored amino acids at the P3, P2, P2', and P3' positions. These analyses have provided new insights on the binding preferences of malarial digestive enzymes that were used to design specific methyleneamino peptidomimetic inhibitors of the plasmepsins. Some of these compounds were potent inhibitors of the five plasmepsins, and their possible binding modes were analyzed by computational methods.  相似文献   
894.
A mannose-binding C-type lectin (MBL) was isolated by affinity chromatography from Heliothis virescens immune pupal hemolymph. The immune pupal hemolymph was obtained after bacterial injection of live Enterobacter cloacae bacteria. MBL in mammals acts as an opsonin for phagocytosis and activates the lectin complement pathway of the innate immune response, which leads to killing of gram-negative bacteria and enveloped viruses. The affinity-purified and reduced pupal MBL showed a single band of 36 kDa by SDS-PAGE (12% gel). A dot-immunoblot ELISA (using guinea pig anti-MBL IgG as primary antibody) demonstrated specificity of the antibody for the affinity-purified pupal MBL. The immune pupal hemolymph contained 21 microg of MBL per ml of hemolymph. The amino acid composition of the purified pupal MBL was determined with high amounts of arginine and histidine detected. The presence of MBL in insect pupae has not before been reported and could be important in pupal innate immunity to bacterial infection.  相似文献   
895.
The role of NKT cells during immune responses is diverse, ranging from antiviral and antitumor activity to the regulation of autoimmune diseases; however, the regulatory function of CD1d-dependent NKT cells in rejection responses against allogeneic graft is uncertain. In this study, we demonstrated the direct regulatory effects of CD1d-dependent NKT cells using an allogeneic skin transplantation model. H-Y-mismatched skin graft survival was shortened in CD1d-/- recipients compared with wild-type recipients. Adoptive transfer of syngeneic NKT cells via splenocytes or hepatic mononuclear cells into CD1d-/- recipients restored graft survival times to those of wild-type recipients. alpha-Galactosylceramide, a specific activator of NKT cells, further prolonged graft survival. Although CD1d-dependent NKT cells did not extend skin graft survival in either major or complete minor histocompatibility-mismatched models, these cells affected graft survival in minor Ag mismatch models according to the magnitude of the antigenic difference. The afferent arm of NKT cell activation during transplantation required CD1d molecules expressed on host APCs and the migration of CD1d-dependent NKT cells into grafts. Moreover, the regulatory effects of CD1d-dependent NKT cells against alloantigen were primarily IL-10 dependent. Taken together, we concluded that CD1d-dependent NKT cells may directly affect the outcome of allogeneic skin graft through an IL-10-dependent regulatory mechanism.  相似文献   
896.
Ultraviolet (UV) irradiation regulates UV-responsive genes, including matrix metalloproteinases (MMPs). Moreover, UV-induced MMPs cause connective tissue damage and the skin to become wrinkled and aged. Here, we investigated the effect of eicosapentaenoic acid (EPA), a dietary omega-3 fatty acid, on UV-induced MMP-1 expression in human dermal fibroblasts (HDFs). We found that UV radiation increases MMP-1 expression and that this is mediated by p44 and p42 MAP kinase (ERK) and Jun-N-terminal kinase (JNK) activation but not by p38 activation. Pretreatment of HDFs with EPA inhibited UV-induced MMP-1 expression in a dose-dependent manner and also inhibited the UV-induced activation of ERK and JNK by inhibiting ERK kinase (MEK1) and SAPK/ERK kinase 1 (SEK1) activation, respectively. Moreover, inhibition of ERK and JNK by EPA resulted in the decrease of c-Fos expression and c-Jun phosphorylation/expression induced by UV, respectively, which led to the inhibition of UV-induced activator protein-1 DNA binding activity. This inhibitory effect of EPA on MMP-1 was not mediated by an antioxidant effect. We also found that EPA inhibited 12-O-tetradecanoylphorbol-13-acetate- or tumor necrosis factor-alpha-induced MMP-1 expression in HDFs and UV-induced MMP-1 expression in HaCaT cells. In conclusion, our results demonstrate that EPA can inhibit UV-induced MMP-1 expression by inhibiting the MEK1/ERK/c-Fos and SEK1/JNK/c-Jun pathways. Therefore, EPA is a potential agent for the prevention and treatment of skin aging.  相似文献   
897.
In an attempt to increase the specific thrombopoietin (TPO) productivity (q(TPO)) of recombinant Chinese hamster ovary (rCHO) cells (CHO-TPO), the effect of expression level of calnexin (CNX) and calreticulin (CRT) on q(TPO) was investigated. To control both CNX and CRT expression levels simultaneously, the Tet-Off system was first introduced in CHO-TPO cells, and stable Tet-Off cells (TPO-Tet-Off) were screened by luciferase assay. The doxycycline-regulated CNX and CRT expression system in rCHO cells (TPO-CNX/CRT) was established by cotransfection of CNX and CRT expression vector and pTK-Hyg vector into TPO-Tet-Off cells and subsequent screening by Western blot analysis of CNX and CRT. The expression levels of CNX and CRT in TPO-CNX/CRT cells could be tightly controlled by adding different concentrations of doxycycline to a culture medium. Compared with the basal level (2 microg/mL doxycyline), a 2.9-fold increase in CNX expression and a 2.8-fold increase in CRT expression were obtained in the absence of doxycycline. This, in turn, resulted in a 1.9-fold increase in q(TPO), not inhibiting cell growth or changing in vivo biological activity of TPO. Taken together, these results demonstrate that a simultaneous overexpression of CNX and CRT can increase the q(TPO) of rCHO cells.  相似文献   
898.
The interaction between tenascin-C (TN-C), a multi-subunit extracellular matrix protein, and heparin was examined using a surface plasmon resonance-based technique on a Biacore system. The aims of the present study were to examine the affinity of fibronectin type III repeats of TN-C fragments (TNIII) for heparin, to investigate the role of the TNIII4 domains in the binding of TN-C to heparin, and to delineate a sequence of amino acids within the TNIII4 domain, which mediates cooperative heparin binding. At a physiological salt concentration, and pH 7.4, TNIII3-5 binds to heparin with high affinity (K(D) = 30 nm). However, a major heparin-binding site in TNIII5 produces a modest affinity binding at a K(D) near 4 microm, and a second site in TNIII4 enhances the binding by several orders of magnitude, although it was far too weak to produce an observable binding of TNIII4 by itself. Moreover, mutagenesis of the KEDK sequence in the TNIII4 domain resulted in the significant reduction of heparin-binding affinity. In addition, residues in the KEDK sequences are conserved in TN-C throughout mammalian evolution. Thus the structure-based sequence alignment, mutagenesis, and sequence conservation data together reveal a KEDK sequence in TNIII4 suggestive of a minor heparin-binding site. Finally, we demonstrate that TNIII4 contains binding sites for heparin sulfate proteoglycan and enhances the heparin sulfate proteoglycan-dependent human gingival fibroblast adhesion to TNIII5, thus providing the biological significance of heparin-binding site of TNIII4. These results suggest that the heparin-binding sites may traverse TNIII4-5 and thus require KEDK in TNIII4 for optimal heparin-binding.  相似文献   
899.
Protein targeting mechanisms in flagellated protozoan parasites have received considerable interest because of a huge bias in these organisms toward the glycosylphosphatidylinositol anchor as a mechanism for the membrane attachment of cell surface macromolecules. In this study, the trafficking of invariant surface glycoprotein 65 (ISG65), a family of type I transmembrane proteins, was examined. Analysis of the C-terminal domains of ISG65 family members demonstrated a high level of conservation and, in particular, the presence of three lysine residues contained within the cytoplasmic tails of all ISG65s. ISG65 was expressed on the cell surface, in agreement with earlier work, but an intracellular pool of ISG65 was also detected within a Rab5A early endosome. Transplantation of the C-terminal 74 amino acids of ISG65 (encompassing the 23 C-terminal residues of the extracellular domain, the transmembrane peptide, and the cytoplasmic domain) onto the N-terminal domain of BiP (BiPN) was sufficient to target the chimera to the same internal compartments as native ISG65. Further, site-directed mutagenesis indicated that the cytoplasmic tail was required for endoplasmic reticulum exit and that at least two of the cytoplasmic domain lysine residues are needed for endosomal targeting, as removal of all three led to surface expression. Kinetic measurements demonstrate that the BiPN fusion protein (containing the ISG65 C terminus) has a short half-life, indicating rapid turnover. In contrast, BiPN fusion proteins containing a glycosylphosphatidylinositol anchor instead of the ISG65 C-terminal region are stably expressed on the surface, confirming the requirement for the ISG65 sequence for endosomal targeting. We suggest that the lack of surface expression of the BiPN-ISG65 fusion protein is likely due to more efficient internalization compared with ISG65. Taken together, these data demonstrate the presence of a lysine-dependent endocytosis signal in the ISG65 family.  相似文献   
900.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号