首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7902篇
  免费   663篇
  国内免费   6篇
  2023年   28篇
  2022年   81篇
  2021年   123篇
  2020年   63篇
  2019年   110篇
  2018年   153篇
  2017年   113篇
  2016年   240篇
  2015年   368篇
  2014年   426篇
  2013年   438篇
  2012年   554篇
  2011年   562篇
  2010年   351篇
  2009年   330篇
  2008年   452篇
  2007年   433篇
  2006年   396篇
  2005年   396篇
  2004年   401篇
  2003年   352篇
  2002年   313篇
  2001年   304篇
  2000年   243篇
  1999年   218篇
  1998年   80篇
  1997年   81篇
  1996年   58篇
  1995年   60篇
  1994年   40篇
  1993年   29篇
  1992年   77篇
  1991年   83篇
  1990年   51篇
  1989年   54篇
  1988年   47篇
  1987年   44篇
  1986年   32篇
  1985年   36篇
  1984年   33篇
  1982年   20篇
  1981年   18篇
  1979年   19篇
  1978年   22篇
  1977年   24篇
  1976年   24篇
  1974年   24篇
  1973年   19篇
  1971年   20篇
  1970年   17篇
排序方式: 共有8571条查询结果,搜索用时 15 毫秒
141.
Inhibition of glutathione disulfide reductase by glutathione   总被引:2,自引:0,他引:2  
Rat-liver glutathione disulfide reductase is significantly inhibited by physiological concentrations of the product, glutathione. GSH is a noncompetitive inhibitor against GSSG and an uncompetitive inhibitor against NADPH at saturating concentrations of the fixed substrate. In both cases, the inhibition by GSH is parabolic, consistent with the requirement for 2 eq. of GSH in the reverse reaction. The inhibition of GSSG reduction by physiological levels of the product, GSH, would result in a significantly more oxidizing intracellular environment than would be realized in the absence of inhibition. Considering inhibition by the high intracellular concentration of GSH, the steady-state concentration of GSSG required to maintain a basal glutathione peroxidase flux of 300 nmol/min/g in rat liver is estimated at 8-9 microM, about 1000-fold higher than the concentration of GSSG predicted from the equilibrium constant for glutathione reductase. The kinetic properties of glutathione reductase also provide a rationale for the increased glutathione (GSSG) efflux observed when cells are exposed to oxidative stress. The resulting decrease in intracellular GSH relieves the noncompetitive inhibition of glutathione reductase and results in an increased capacity (Vmax) and decreased Km for GSSG.  相似文献   
142.
Evidence based on optimal pH, thermal stability, and enzyme inhibition data suggests that the NADPH-dependent microsomal N-oxidation of the pyrrolizidine alkaloid senecionine is carried out largely by flavin-containing monooxygenase in guinea pig liver, lung, and kidney. In contrast, the hepatic microsomal conversion of senecionine to the pyrrole metabolite (+/-)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP) is catalyzed largely by cytochrome P450. However, the rate of senecionine N-oxide formation (detoxication) far exceeded the rate of DHP formation (activation) in guinea pig liver microsomes over a range of pHs (pH 6.8 to 9.8). In guinea pig lung and kidney microsomes, N-oxide was the major metabolite formed from senecionine with little or no production of DHP. The high rate of detoxication coupled with the low level of activation of senecionine in liver, lung, and kidney may help explain the apparent resistance of the guinea pig to intoxication by senecionine and other pyrrolizidine alkaloids.  相似文献   
143.
An endonuclease that specifically removes 8-hydroxyguanine (oh8Gua) from DNA has been isolated from Escherichia coli. As the amount of oh8Gua produced in DNA of X-ray-irradiated mice is known to decrease with time after irradiation, an attempt was made to find a similar activity in human polymorphonuclear neutrophils (PMNs) using a synthetic dsDNA containing oh8Gua as a substrate. The PMN enzyme was isolated free of other DNases, and found to cleave the substrate DNA simultaneously at 2 sites, the phosphodiester bonds 5' and 3' to oh8Gua, producing free hydroxyl and phosphate groups, respectively. The enzyme showed almost no activity on DNAs containing other kinds of modified base tested or mismatched DNA. Thus human cells also contain an endonuclease that specifically removes oh8Gua residues from DNA.  相似文献   
144.
There are clusters of basic amino acids on many cytoplasmic proteins that bind transiently to membranes (e.g., protein kinase C) as well as on the cytoplasmic domain of many intrinsic membrane proteins (e.g., glycophorin). To explore the possibility that these basic residues bind electrostatically to monovalent acidic lipids, we studied the binding of the peptides Lysn and Argn (n = 1-5) to bilayer membranes containing phosphatidylserine (PS) or phosphatidylglycerol (PG). We made electrophoretic mobility measurements using multilamellar vesicles, fluorescence and equilibrium binding measurements using large unilamellar vesicles, and surface potential measurements using monolayers. None of the peptides bound to vesicles formed from the zwitterionic lipid phosphatidylcholine (PC) but all bound to vesicles formed from PC/PS or PC/PG mixtures. None of the peptides exhibited specificity between PS and PG. Each lysine residue that was added to Lys2 decreased by one order of magnitude the concentration of peptide required to reverse the charge on the vesicle; equivalently it increased by one order of magnitude the binding affinity of the peptides for the PS vesicles. The simplest explanation is that each added lysine binds independently to a separate PS with a microscopic association constant of 10 M-1 or a free energy of approximately 1.4 kcal/mol. Similar, but not identical, results were obtained with the Argn peptides. A simple theoretical model combines the Gouy-Chapman theory (which accounts for the nonspecific electrostatic accumulation of the peptides in the aqueous diffuse double layer adjacent to the membrane) with mass action equations (which account for the binding of the peptides to greater than 1 PS). This model can account qualitatively for the dependence of binding on both the number of basic residues in the peptides and the mole fraction of PS in the membrane.  相似文献   
145.
146.
Two soluble serine proteases Do and So from Escherichia coli were found to distinctively cleave the purified, 39 kDa Ada protein into fragments with sizes of 12-31 kDa. Protease So appears to generate a C-terminal 19 kDa polypeptide, similarly to OmpT protease. In addition, the purified 19 kDa C-terminal half of Ada protein can be further processed mainly to an 18 kDa fragment by protease So and to a 12 kDa by protease Do. These results suggest that proteases Do and So are involved in endogenous cleavage of Ada protein, which may play a role in down-regulating the adaptive response to alkylating agents.  相似文献   
147.
148.
Serially propagated Cinchona ledgeriana and C. succirubra (Rubiaceae) leaf, root and unorganized suspension cultures established from germinated seeds were studied for quinine and quinidine production. Leaf organ cultures were grown and subcultured in Murashige and Skoog's Revised Tobacco Medium supplemented with benzyladenine; root organ cultures were grown on the same medium supplemented with indolebutyric acid; and unorganized suspension cultures were grown on the same medium supplemented with 2,4-dichlorophenoxyacetic acid and benzyladenine. On a dry weight basis, leaf organ cultures of C. ledgeriana contained 0.06 % quinine and 0.05 % quinidine and of C. succirubra contained 0.04 % quinine and 0.04 % quinidine. No quinine and quinidine were detected in either root organ or unorganized suspension cultures.  相似文献   
149.
The effects of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on the aryl hydrocarbon hydroxylase (AHH) activities in the liver, lung and skin of rats and mice have been studied to examine the possible mechanisms of the anticarcinogenic actions of these compounds. Both compounds inhibit the hydroxylase activities of hepatic microsomes and nuclei, with BHA a more potent inhibitor than BHT. The AHH of lung microsomes is inhibited to a lesser extent by BHA and BHT than that of the liver. The AHH activities of both liver and lung microsomes become less susceptible to the inhibition after pretreatment of the animals with 3-methylcholanthrene (MC) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) but phenobarbital (PB) pretreatment does not produce such an effect. In skin homogenates, however, the AHH activities of control rats and mice are not inhibited by BHA and BHT. The only skin sample which is inhibited by BHA and BHT is that from TCDD-pretreated mice. It has been established that the extent of inhibition with different samples is related to the concentration of BHA in the incubation but not to the amounts or specific activities of microsomes used. Double reciprocal plots suggest that BHA exerts a mixed inhibition on the hydroxylase of liver microsomes with a Ki of 7.7 μM. Analysis of the metabolites of benzo[a]pyrene (BP) shows that BHA inhibits the formation of various metabolites uniformly without changing the regio-selectivity of the enzyme system. The mechanism of inhibition has also been studied with a reconstituted AHH system consisting of cytochrome P-450 (P-450), reductase and phospholipid. The system with P-450 isolated from PB-induced microsomes is inhibited to a much greater extent than that with MC-induced P-450. The results indicate that the inhibitory action of BHA is dependent on the species of the animal, tissue types and treatment with inducers.  相似文献   
150.
K. S. Chung 《Hydrobiologia》1981,78(2):177-181
The acclimation rates of temperature changes in Cyprinodon dearborni, collected from Laguna Los Patos, Cumana, Venezuela, were determined by the critical thermal maximum method. At an increase in temperature (from 24 to 31°C) fish started to gain acclimation level after 3 hours and took 3 days to fully get up to a higher level of resistance to heat death; however, at a decrease in temperature (from 3 t to 24°C) fish began to lose its acclimation level after 12 days and required 39 days to reach a lower level of resistance to thermal death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号