首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4785篇
  免费   309篇
  国内免费   304篇
  5398篇
  2024年   8篇
  2023年   60篇
  2022年   143篇
  2021年   271篇
  2020年   194篇
  2019年   208篇
  2018年   162篇
  2017年   133篇
  2016年   215篇
  2015年   315篇
  2014年   335篇
  2013年   358篇
  2012年   493篇
  2011年   399篇
  2010年   232篇
  2009年   227篇
  2008年   237篇
  2007年   189篇
  2006年   174篇
  2005年   136篇
  2004年   110篇
  2003年   99篇
  2002年   103篇
  2001年   84篇
  2000年   75篇
  1999年   69篇
  1998年   42篇
  1997年   40篇
  1996年   35篇
  1995年   42篇
  1994年   39篇
  1993年   24篇
  1992年   30篇
  1991年   33篇
  1990年   17篇
  1989年   16篇
  1988年   12篇
  1987年   10篇
  1986年   7篇
  1985年   10篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1965年   1篇
排序方式: 共有5398条查询结果,搜索用时 12 毫秒
31.
32.
Zou Q  Yan X  Li B  Zeng X  Zhou J  Zhang J 《Proteomics》2006,6(6):1848-1855
Vibrio cholerae can be differentiated into epidemic and non-epidemic strains by sorbitol fermentation speed, but little research has been done on its mechanisms. In this study, we investigated differential protein expression of the two strains in response to sorbitol metabolism. V. cholerae strains were cultured in media with and without sorbitol, respectively. Proteins were separated by 2-DE, and those that showed different expression in the two media were identified by MALDI-TOF MS. Fifteen proteins in epidemic strains and 11 proteins in non-epidemic strains showed a different expression in sorbitol medium. Among them, 4 proteins were common to epidemic and non-epidemic strains. Gene sequence analysis showed that some mutations occurred in these proteins between the two strains. Potential functions of these proteins included sugar uptake, amino acid uptake, electron transport, sulfate and thiosulfate transport.  相似文献   
33.
34.
Top-down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content.  相似文献   
35.
We report the synthesis and characterization of four cyclometalated iridium complexes based on carbazole and arylamine modified 2-phenylpyridine. The carbazole and arylamine groups are linked to 2-phenyl pyridine backbone to enhance the energy harvesting and transfer from host to guest materials. The electrochemical and photophysical properties of the complexes are studied and electroluminescent devices are fabricated. The results show that the complexes with ligands containing carbazole moieties have desirable phosphorescent properties. The device with complex 3 doped PVK (poly (vinylcarbazole)) as emission layer achieves maximum luminous efficiency of 6.56 cd A−1 and maximum brightness of 14448 cd m−2.  相似文献   
36.
37.
Therminator DNA polymerase is an efficient DNA-dependent TNA polymerase capable of polymerizing TNA oligomers of at least 80 nt in length. In order for Therminator to be useful for the in vitro selection of functional TNA sequences, its TNA synthesis fidelity must be high enough to preserve successful sequences. We used sequencing to examine the fidelity of Therminator-catalyzed TNA synthesis at different temperatures, incubation times, tNTP ratios and primer/template combinations. TNA synthesis by Therminator exhibits high fidelity under optimal conditions; the observed fidelity is sufficient to allow in vitro selection with TNA libraries of at least 200 nt in length.  相似文献   
38.
Telomere Biology and Cellular Aging in Nonhuman Primate Cells   总被引:3,自引:0,他引:3  
To determine how cellular aging is conserved among primates, we analyzed the replicative potential and telomere shortening in skin fibroblasts of anthropoids and prosimians. The average telomere length of the New World primates Ateles geoffroyi (spider monkey) and Saimiri sciureus (squirrel monkey) and the Old World primates Macaca mulatta (rhesus monkey), Pongo pygmaeus (orangutan), and Pan paniscus (pigmy chimpanzee) ranged from 4 to 16 kb. We found that telomere shortening limits the replicative capacity of anthropoid fibroblasts and that the expression of human telomerase produced telomere elongation and the extension of their in vitro life span. In contrast the prosimian Lemur catta (ring-tailed lemur) had both long and short telomeres and telomere shortening did not provide an absolute barrier to immortalization. Following a transient growth arrest a subset of cells showing a reduced number of chromosomes overgrew the cultures without activation of telomerase. Here we show that the presence of continuous TTAGGG repeats at telomeres and rigorous control of replicative aging by telomere shortening appear to be conserved among anthropoid primates but is less effective in prosimian lemurs.  相似文献   
39.
Smith J  Zou H  Rothstein R 《Biochimie》2000,82(1):71-78
Replication protein A (RPA) is a heterotrimeric single-stranded DNA binding protein whose role in DNA replication, recombination and repair has been mainly elucidated through in vitro biochemical studies utilizing the mammalian complex. However, the identification of homologs of all three subunits in Saccharomyces cerevisiae offers the opportunity of examining the in vivo role of RPA. In our laboratory, we have previously isolated a missense allele of the RFA1 gene, encoding the p70 subunit of the RPA complex. Strains containing this mutant allele, rfa1-D228Y, display increased levels of direct-repeat recombination, decreased levels of heteroallelic recombination, UV sensitivity and a S-phase delay. In this study, we have characterized further the role of RPA by screening other replication and repair mutants for a synthetic lethal phenotype in combination with the rfa1-D228Y allele. Among the replication mutants examined, only one displayed a synthetic lethal phenotype, pol12-100, a conditional allele of the B subunit of pol alpha-primase. In addition, a delayed senescence phenotype was observed in raf1-D228Y strains containing a null mutation of HDF1, the S. cerevisiae homolog of the 70 kDa subunit of Ku. Interestingly, a synergistic reduction in telomere length observed in the double mutants suggests that the shortening of telomeres may be the cause of the decreased viability in these strains. Furthermore, this result represents the first evidence of a role for RPA in telomere maintenance.  相似文献   
40.
XPA (xeroderma pigmentosum group A) protein is an essential factor for NER (nucleotide excision repair) which is believed to be involved in DNA damage recognition/verification, NER factor recruiting and stabilization of repair intermediates. Past studies on the structure of XPA have focused primarily on XPA interaction with damaged DNA. However, how XPA interacts with other DNA structures remains unknown though recent evidence suggest that these structures could be important for its roles in both NER and non-NER activities. Previously, we reported that XPA recognizes undamaged DNA ds/ssDNA (double-strand/single-strandDNA) junctions with a binding affinity much higher than its ability to bind bulky DNA damage. To understand how this interaction occurs biochemically we implemented a structural determination of the interaction using a MS-based protein footprinting method and limited proteolysis. By monitoring surface accessibility of XPA lysines to NHS-biotin modification in the free protein and the DNA junction-bound complex we show that XPA physically interacts with the DNA junctions via two lysines, K168 and K179, located in the previously known XPA(98–219) DBD (DNA-binding domain). Importantly, we also uncovered new lysine residues, outside of the known DBD, involved in the binding. We found that residues K221, K222, K224 and K236 in the C-terminal domain are involved in DNA binding. Limited proteolysis analysis of XPA–DNA interactions further confirmed this observation. Structural modelling with these data suggests a clamp-like DBD for the XPA binding to ds/ssDNA junctions. Our results provide a novel structure-function view of XPA–DNA junction interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号