首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1813篇
  免费   158篇
  国内免费   155篇
  2024年   2篇
  2023年   20篇
  2022年   62篇
  2021年   92篇
  2020年   65篇
  2019年   91篇
  2018年   91篇
  2017年   44篇
  2016年   78篇
  2015年   129篇
  2014年   151篇
  2013年   139篇
  2012年   172篇
  2011年   153篇
  2010年   89篇
  2009年   82篇
  2008年   96篇
  2007年   80篇
  2006年   92篇
  2005年   59篇
  2004年   41篇
  2003年   40篇
  2002年   45篇
  2001年   26篇
  2000年   30篇
  1999年   24篇
  1998年   14篇
  1997年   17篇
  1996年   12篇
  1995年   20篇
  1994年   10篇
  1993年   10篇
  1992年   6篇
  1991年   9篇
  1990年   10篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有2126条查询结果,搜索用时 15 毫秒
111.
112.
The aim of this study is to evaluate the feasibility of Laser Doppler imaging (LDI) for noninvasive and dynamic assessment of hemorrhagic shock in a rabbit model. A rabbit model of hemorrhagic shock was generated and LDI of the microcirculation in the rabbit ears was performed before and at 0, 30, 60, and 90 min after hemorrhage. The CCD (Charge Coupled Device) image of the ears, the mean arterial pressure (MAP) and the heart rate (HR) were monitored. The mean LDI flux was calculated. The HR of rabbits was significantly (p < 0.05) elevated and the MAP was decreased after hemorrhage, compared to the pre-hemorrhage level. Within the initial 30 min after hemorrhage, the perfusion flux lineally dropped down. In contrast, the MAP values did not differ significantly between the time points of 0 and 30 after hemorrhage (p > 0.05). Both the flux numbers and the red-to-blue color changes on LDI imaging showed the reduction of the microcirculation. LDI imaging is a noninvasive and non-contact approach to evaluate the microcirculation and may offer benefits in the diagnosis and treatment of hemorrhage shock. Further studies are needed to confirm its effectiveness in clinical practice.  相似文献   
113.
The hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, are the central mediators of the homeostatic response that enables cells to survive and differentiate in low-oxygen conditions. Previous studies indicated that disruption of the von Hippel-Lindau gene (Vhl) coincides with the activation of HIFα signaling. Here we show that inactivation of Vhl in mature osteoblasts/osteocytes induces their apoptosis and disrupts the cell/canalicular network. VHL-deficient (ΔVHL) mice exhibited a significantly increased cortical bone area resulting from enhanced proliferation and osteogenic differentiation of the bone marrow stromal cells (BMSCs) by inducing the expression of β-catenin in the BMSC. Our data suggest that the VHL/HIFα pathway in mature osteoblasts/osteocytes plays a critical role in the bone cell/canalicular network and that the changes of osteocyte morphology/function and cell/canalicular network may unleash the bone formation, The underlying mechanism of which was the accumulation of β-catenin in the osteoblasts/osteoprogenitors of the bone marrow.  相似文献   
114.
Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases.  相似文献   
115.
Individual differences in mind and behavior are believed to reflect the functional variability of the human brain. Due to the lack of a large-scale longitudinal dataset, the full landscape of variability within and between individual functional connectomes is largely unknown. We collected 300 resting-state functional magnetic resonance imaging (rfMRI) datasets from 30 healthy participants who were scanned every three days for one month. With these data, both intra- and inter-individual variability of six common rfMRI metrics, as well as their test-retest reliability, were estimated across multiple spatial scales. Global metrics were more dynamic than local regional metrics. Cognitive components involving working memory, inhibition, attention, language and related neural networks exhibited high intra-individual variability. In contrast, inter-individual variability demonstrated a more complex picture across the multiple scales of metrics. Limbic, default, frontoparietal and visual networks and their related cognitive components were more differentiable than somatomotor and attention networks across the participants. Analyzing both intra- and inter-individual variability revealed a set of high-resolution maps on test-retest reliability of the multi-scale connectomic metrics. These findings represent the first collection of individual differences in multi-scale and multi-metric characterization of the human functional connectomes in-vivo, serving as normal references for the field to guide the use of common functional metrics in rfMRI-based applications.  相似文献   
116.
117.
118.
Transforming growth factor-β (TGF-β) responsiveness in cultured cells can be modulated by TGF-β partitioning between lipid raft/caveolae- and clathrin-mediated endocytosis pathways. Lipid rafts are plasma membrane microdomains with an important role in cell survival signaling, and cholesterol is necessary for the lipid rafts’ structure and function. Euphol is a euphane-type triterpene alcohol that is structurally similar to cholesterol and has a wide range of pharmacological properties, including anti-inflammatory and anti-cancer effects. In the present study, euphol suppressed TGF-β signaling by inducing TGF-β receptor movement into lipid-raft microdomains and degrading TGF-β receptors.  相似文献   
119.
Ten well-annotated genomes of “Sulfolobus islandicus” strains from different geographic locations have been released at the NCBI database. Whole genome based composition vector trees indicate that these strains show the same branching patterns as originally reported by multi-locus sequence analysis. To determine whether the ten strains meet the criteria for separate species, DNA–DNA hybridization (DDH) was performed in silico. DDH values of strains from the same geographic location, i.e., Iceland, Kamchatka and North America, ranged from 82.4 to 95.4 %, clearly qualifying them as members of the same species. The lowest DDH values found between locations ranged from 75.5 to 76.6 %, which exceed the 70 % DDH threshold for a species thereby indicating they are all members of the same species based on the currently accepted definition. The clear divergences of strains from the different geographic locations are sufficiently great to consider them as separate geovars. “S. islandicus” has not yet been validly named and a type strain has not been deposited in culture collections. We urgently recommend that those who study the organism fulfill the criteria of the International Code of Nomenclature of Bacteria in order to designate a type strain and to identify and deposit related strains of this species to make them available to the broader scientific community.  相似文献   
120.
Large-scale flexibility within a multidomain protein often plays an important role in its biological function. Despite its inherent low resolution, small-angle x-ray scattering (SAXS) is well suited to investigate protein flexibility and determine, with the help of computational modeling, what kinds of protein conformations would coexist in solution. In this article, we develop a tool that combines SAXS data with a previously developed sampling technique called amplified collective motions (ACM) to elucidate structures of highly dynamic multidomain proteins in solution. We demonstrate the use of this tool in two proteins, bacteriophage T4 lysozyme and tandem WW domains of the formin-binding protein 21. The ACM simulations can sample the conformational space of proteins much more extensively than standard molecular dynamics (MD) simulations. Therefore, conformations generated by ACM are significantly better at reproducing the SAXS data than are those from MD simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号