首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3509篇
  免费   296篇
  国内免费   8篇
  2023年   21篇
  2022年   27篇
  2021年   50篇
  2020年   36篇
  2019年   46篇
  2018年   68篇
  2017年   46篇
  2016年   101篇
  2015年   152篇
  2014年   196篇
  2013年   222篇
  2012年   302篇
  2011年   269篇
  2010年   148篇
  2009年   156篇
  2008年   200篇
  2007年   182篇
  2006年   155篇
  2005年   139篇
  2004年   139篇
  2003年   131篇
  2002年   126篇
  2001年   104篇
  2000年   61篇
  1999年   89篇
  1998年   29篇
  1997年   26篇
  1996年   23篇
  1995年   22篇
  1994年   24篇
  1993年   20篇
  1992年   50篇
  1991年   33篇
  1990年   39篇
  1989年   32篇
  1988年   40篇
  1987年   34篇
  1986年   35篇
  1985年   23篇
  1984年   14篇
  1983年   14篇
  1981年   13篇
  1980年   12篇
  1979年   26篇
  1978年   13篇
  1977年   11篇
  1976年   14篇
  1975年   12篇
  1974年   19篇
  1972年   12篇
排序方式: 共有3813条查询结果,搜索用时 250 毫秒
131.
Shiga toxin (Stx) produced by enterohemorrhagic Escherichia coli causes diarrhea-associated hemolytic-uremic syndrome (DHUS), a severe renal thrombotic microangiopathy. We investigated the interaction between Stx and von Willebrand Factor (VWF), a multimeric plasma glycoprotein that mediates platelet adhesion, activation, and aggregation. Stx bound to ultra-large VWF (ULVWF) secreted from and anchored to stimulated human umbilical vein endothelial cells, as well as to immobilized VWF-rich human umbilical vein endothelial cell supernatant. This Stx binding was localized to the A1 and A2 domain of VWF monomeric subunits and reduced the rate of ADAMTS-13-mediated cleavage of the Tyr1605-Met1606 peptide bond in the A2 domain. Stx-VWF interaction and the associated delay in ADAMTS-13-mediated cleavage of VWF may contribute to the pathophysiology of DHUS.  相似文献   
132.
Inhibitors based on a benzo-fused spirocyclic oxazepine scaffold were discovered for stearoyl-coenzyme A (CoA) desaturase 1 (SCD1) and subsequently optimized to potent compounds with favorable pharmacokinetic profiles and in vivo efficacy in reducing the desaturation index in a mouse model. Initial optimization revealed potency preferences for the oxazepine core and benzylic positions, while substituents on the piperidine portions were more tolerant and allowed for tuning of potency and PK properties. After preparation and testing of a range of functional groups on the piperidine nitrogen, three classes of analogs were identified with single digit nanomolar potency: glycine amides, heterocycle-linked amides, and thiazoles. Responding to concerns about target localization and potential mechanism-based side effects, an initial effort was also made to improve liver concentration in an available rat PK model. An advanced compound 17m with a 5-carboxy-2-thiazole substructure appended to the spirocyclic piperidine scaffold was developed which satisfied the in vitro and in vivo requirements for more detailed studies.  相似文献   
133.
134.
The use of plants to reclaim contaminated soils and groundwater, known as phytoremediation, is a promising biotechnological strategy which has gained a lot of attention in the last few years. Plants have evolved sophisticated detoxification systems against the toxin chemicals: following the uptake, the compounds are activated so that certain functional groups can conjugate hydrophilic molecules, such as thiols. The resulting conjugates are recognized by the tonoplast transporters and sequestered into the vacuoles. The xenobiotic conjugation with glutathione is mediated by enzymes which belong to the superfamily of glutathione S-transferases (GSTs) catalyzing the nucleophylic attack of the sulphur of glutathione on the electrophilic groups of the cytotoxic substrates therefore playing a crucial role in their degradation. This study was designed to identify the putative correlation between structural and functional characteristics of plant GST classes belonging to different plant species. Consequently, the protein sequences of the expressed GSTs have been retrieved from UniGene, classified and then analyzed in order to assess the evolutionary trend and to predict secondary structure. Moreover, the fingerprint analysis was performed with SCAN Prosite in the attempt to correlate meaningful signature profile and biological information. The results evidenced that all the soluble GSTs have a tendency to assume the α-helix secondary structure followed by random coil and β-sheet. The fingerprint analysis revealed that specific signature profiles related mainly to protein phosphorylation are in the GST classes of all considered species thus suggesting that they might be subjected to reversible activation by phosphorylation-mediated regulation. This approach provides the knowledge of the relationship between presence of conserved signature profile and biological function in the view of future selection of GSTs which might be employed in either mutagenesis or genetic engineering studies.  相似文献   
135.
Seed dispersal mode of plants and primary interactions with animals are studied in the evergreen Afrotropical forest of LuiKotale, at the south-western part of Salonga National Park (DR Congo). We first analysed seed dispersal strategies for (a) the plant species inventoried over a decade at the study site and (b) the tree community in 12 × 1 ha census plots. Our analyses of dispersal syndromes for 735 identified plant species show that 85 % produce fleshy fruits and rely on animals for primary seed dispersal. Trees depending on animals for primary dispersal dominate the tree community (95 %), while wind-dispersed and autochorous trees are rare in mixed tropical forests. A list of frugivorous vertebrate species of the ecosystem was established. Among the fruit-eating vertebrate species identified in the ecosystem, forest elephants and bonobos are threatened with extinction (IUCN, The IUCN red list of threatened species, 2012). Although most of the species listed previously are internationally and regionally protected, all the species we observed dispersing seeds are hunted, fished or trapped by humans in the area. With the exception of bush pigs, seed predators, mainly small-sized animals, are generally not targeted by hunters. As a consequence, we expect human pressure on key animal species to impact the plant community. We suggest defaunation to be considered as major conservation problem. Thus, not only for the sake of animal species but also for that of plant species conservation, anti-poaching measures should have priority in both “protected” and unprotected areas. Defaunation could bring a new impoverished era for plants in tropical forests.  相似文献   
136.
137.
The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage‐specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co‐occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages.  相似文献   
138.
Phytoplasmas are a group of bacteria that are associated with hundreds of plant diseases. Due to their economical importance and the difficulties involved in the experimental study of these obligate pathogens, genome sequencing and comparative analysis have been utilized as powerful tools to understand phytoplasma biology. To date four complete phytoplasma genome sequences have been published. However, these four strains represent limited phylogenetic diversity. In this study, we report the shotgun sequencing and evolutionary analysis of a peanut witches''-broom (PnWB) phytoplasma genome. The availability of this genome provides the first representative of the 16SrII group and substantially improves the taxon sampling to investigate genome evolution. The draft genome assembly contains 13 chromosomal contigs with a total size of 562,473 bp, covering ∼90% of the chromosome. Additionally, a complete plasmid sequence is included. Comparisons among the five available phytoplasma genomes reveal the differentiations in gene content and metabolic capacity. Notably, phylogenetic inferences of the potential mobile units (PMUs) in these genomes indicate that horizontal transfer may have occurred between divergent phytoplasma lineages. Because many effectors are associated with PMUs, the horizontal transfer of these transposon-like elements can contribute to the adaptation and diversification of these pathogens. In summary, the findings from this study highlight the importance of improving taxon sampling when investigating genome evolution. Moreover, the currently available sequences are inadequate to fully characterize the pan-genome of phytoplasmas. Future genome sequencing efforts to expand phylogenetic diversity are essential in improving our understanding of phytoplasma evolution.  相似文献   
139.
Cell polarization occurs along a single axis that is generally determined by a spatial cue. Cells of the budding yeast exhibit a characteristic pattern of budding, which depends on cell-type-specific cortical markers, reflecting a genetic programming for the site of cell polarization. The Cdc42 GTPase plays a key role in cell polarization in various cell types. Although previous studies in budding yeast suggested positive feedback loops whereby Cdc42 becomes polarized, these mechanisms do not include spatial cues, neglecting the normal patterns of budding. Here we combine live-cell imaging and mathematical modeling to understand how diploid daughter cells establish polarity preferentially at the pole distal to the previous division site. Live-cell imaging shows that daughter cells of diploids exhibit dynamic polarization of Cdc42-GTP, which localizes to the bud tip until the M phase, to the division site at cytokinesis, and then to the distal pole in the next G1 phase. The strong bias toward distal budding of daughter cells requires the distal-pole tag Bud8 and Rga1, a GTPase activating protein for Cdc42, which inhibits budding at the cytokinesis site. Unexpectedly, we also find that over 50% of daughter cells lacking Rga1 exhibit persistent Cdc42-GTP polarization at the bud tip and the distal pole, revealing an additional role of Rga1 in spatiotemporal regulation of Cdc42 and thus in the pattern of polarized growth. Mathematical modeling indeed reveals robust Cdc42-GTP clustering at the distal pole in diploid daughter cells despite random perturbation of the landmark cues. Moreover, modeling predicts different dynamics of Cdc42-GTP polarization when the landmark level and the initial level of Cdc42-GTP at the division site are perturbed by noise added in the model.  相似文献   
140.

Background

BANK1 and BLK belong to the pleiotropic autoimmune genes; recently, epistasis between BANK1 and BLK was detected in systemic lupus erythematosus. Although BLK has been reproducibly identified as a risk factor in rheumatoid arthritis (RA), reports are conflicting about the contribution of BANK1 to RA susceptibility. To ascertain the real impact of BANK1 on RA genetic susceptibility, we performed a large meta-analysis including our original data and tested for an epistatic interaction between BANK1 and BLK in RA susceptibility.

Patients and Methods

We investigated data for 1,915 RA patients and 1,915 ethnically matched healthy controls genotyped for BANK1 rs10516487 and rs3733197 and BLK rs13277113. The association of each SNP and RA was tested by logistic regression. Multivariate analysis was then used with an interaction term to test for an epistatic interaction between the SNPs in the 2 genes.

Results

None of the SNPs tested individually was significantly associated with RA in the genotyped samples. However, we detected an epistatic interaction between BANK1 rs3733197 and BLK rs13277113 (Pinteraction = 0.037). In individuals carrying the BLK rs13277113 GG genotype, presence of the BANK1 rs3733197 G allele increased the risk of RA (odds ratio 1.21 [95% confidence interval 1.04–1.41], P = 0.015. Combining our results with those of all other studies in a large trans-ethnic meta-analysis revealed an association of the BANK1 rs3733197 G allele and RA (1.11 [1.02–1.21], P = 0.012).

Conclusion

This study confirms BANK1 as an RA susceptibility gene and for the first time provides evidence for epistasis between BANK1 and BLK in RA. Our results illustrate the concept of pleiotropic epistatic interaction, suggesting that BANK1 and BLK might play a role in RA pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号