全文获取类型
收费全文 | 20493篇 |
免费 | 1898篇 |
国内免费 | 1970篇 |
专业分类
24361篇 |
出版年
2024年 | 40篇 |
2023年 | 253篇 |
2022年 | 659篇 |
2021年 | 1016篇 |
2020年 | 788篇 |
2019年 | 912篇 |
2018年 | 881篇 |
2017年 | 674篇 |
2016年 | 853篇 |
2015年 | 1270篇 |
2014年 | 1433篇 |
2013年 | 1577篇 |
2012年 | 1948篇 |
2011年 | 1666篇 |
2010年 | 1049篇 |
2009年 | 1008篇 |
2008年 | 1113篇 |
2007年 | 944篇 |
2006年 | 823篇 |
2005年 | 782篇 |
2004年 | 629篇 |
2003年 | 633篇 |
2002年 | 574篇 |
2001年 | 411篇 |
2000年 | 324篇 |
1999年 | 342篇 |
1998年 | 182篇 |
1997年 | 184篇 |
1996年 | 165篇 |
1995年 | 138篇 |
1994年 | 141篇 |
1993年 | 96篇 |
1992年 | 116篇 |
1991年 | 89篇 |
1990年 | 93篇 |
1989年 | 67篇 |
1988年 | 71篇 |
1987年 | 48篇 |
1986年 | 55篇 |
1985年 | 57篇 |
1984年 | 34篇 |
1983年 | 26篇 |
1982年 | 25篇 |
1981年 | 13篇 |
1980年 | 13篇 |
1979年 | 21篇 |
1978年 | 12篇 |
1977年 | 16篇 |
1976年 | 13篇 |
1973年 | 15篇 |
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
41.
Lubiao Liang Ran Sui Yongxiang Song Yajin Zhao 《Acta biochimica et biophysica Sinica》2021,(11):1558-1566
Tumor acidic microenvironment is the main feature of many solid tumors.As a part of the tumor microenvironment,it has a profound impact on the occurrence and de... 相似文献
42.
Yuanyong Feng Xuedi Cao Bin Zhao Chunyan Song Baoxing Pang Liang Hu Chunmei Zhang Jinsong wang Junqi He Songlin wang 《中国科学:生命科学英文版》2021,(11):1810-1828
Although cisplatin is one of the chemotherapeutics most frequently used in oral squamous cell carcinoma (OSCC) treatment,it exerts multiple side effects and poo... 相似文献
43.
Christopher J. Grim Nur A. Hasan Elisa Taviani Bradd Haley Jongsik Chun Thomas S. Brettin David C. Bruce J. Chris Detter Cliff S. Han Olga Chertkov Jean Challacombe Anwar Huq G. Balakrish Nair Rita R. Colwell 《Journal of bacteriology》2010,192(13):3524-3533
The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTXΦ and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain- and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains.Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a life-threatening disease that causes severe, watery diarrhea. Cholera bacteria are serogrouped based on their somatic O antigens, with more than 200 serogroups identified to date (6). Only toxigenic strains of serogroups O1 and O139 have been identified as agents of cholera epidemics and pandemics; serogroups other than O1 and O139 have the potential to cause mild gastroenteritis or, rarely, local outbreaks. Genes coding for cholera toxin (CTX), ctxAB, and other virulence factors have been shown to reside in bacteriophages and various mobile genetic elements. In addition, V. cholerae serogroup O1 is differentiated into two biotypes, classical and El Tor, by a combination of biochemical traits, by sensitivity to biotype-specific bacteriophages, and more recently by nucleotide sequencing of specific genes and by molecular typing (5, 17, 19).There have been seven pandemics of cholera recorded throughout human history. The seventh and current pandemic began in 1961 in the Indonesian island of Sulawesi and subsequently spread to Asia, Africa, and Latin America; the six previous pandemics are believed to have originated in the Indian subcontinent. Isolates of the sixth pandemic were almost exclusively of the O1 classical biotype, whereas the current (seventh) pandemic is dominated by the V. cholerae O1 El Tor biotype as the causative agent, a transition occurring between 1923 and 1961. Today, the disease continues to remain a scourge in developing countries, confounded by the fact that V. cholerae is native to estuaries and river systems throughout the world (8).Over the past 20 years, several new epidemic lineages of V. cholerae O1 El Tor have emerged (or reemerged). For example, in 1992, a new serogroup, namely, O139 of V. cholerae, was identified as the cause of epidemic cholera in India and Bangladesh (25). The initial concern was that a new pandemic was beginning; however, the geographic range of V. cholerae O139 is currently restricted to Asia. Additionally, V. cholerae O1 hybrids and altered El Tor variants have been isolated repeatedly in Bangladesh (Matlab) (23, 24) and Mozambique (1). Altered V. cholerae O1 El Tor isolates produce cholera toxin of the classical biotype but can be biotyped as El Tor by conventional phenotypic assays, whereas V. cholerae O1 hybrid variants cannot be biotyped based on phenotypic tests and can produce cholera toxin of either biotype. These new variants have subsequently replaced the prototype seventh-pandemic V. cholerae O1 El Tor strains in Asia and Africa, with respect to frequency of isolation from clinical cases of cholera (27).Here, we report the genome sequence of three V. cholerae O1 variants, MJ-1236, a Matlab type I hybrid variant from Bangladesh that cannot be biotyped by conventional methods, CIRS101, an altered O1 El Tor isolate from Bangladesh which harbors ctxB of classical origin, and B33, an altered O1 El Tor isolate from Mozambique which harbors classical CTXΦ, and we compare their genomes with prototype El Tor and classical genomes. From an epidemiological viewpoint, among the three variants characterized in this study, V. cholerae CIRS101 is currently the most “successful” in that strains belonging to this type have virtually replaced the prototype El Tor in Asia and many parts of Africa, notably East Africa. This study, therefore, gives us a unique opportunity to understand why V. cholerae CIRS101 is currently the most successful El Tor variant. 相似文献
44.
In this contribution, a simple, rapid, colorimeteric and selective assay for lysine was achieved by a controllable end-to-end assembly of gold nanorods (AuNRs) in the presence of Eu(3+) and lysine. This one-pot end-to-end assembly of 11-mercaptoundecanoic acid (MUA) modified AuNRs was occurred in Britton-Robinson buffer of pH 6.0, which involves the coordination binding between Eu(3+) and COO(-) groups as well as the electrostatic interaction of the COO(-) groups of MUA with the -NH(3)(+) group of lysine. As monitored by absorption spectra, scanning electron microscopic (SEM) images and dynamic light scattering (DLS) measurement, the end-to-end chain assembly results in large red-shift in the longitudinal plasmon resonance absorption (LPRA), giving red-to-blue color change of AuNRs. Importantly, it was found that the red-shift of LPRA is linearly proportional to the concentrations of lysine in the range of 5.0×10(-6)-1.0×10(-3)M with the limit of detection (LOD) being 1.6×10(-6)M (3σ/k). This red-shift of LPRA is highly selective, making it possible to develop a rapid, selective and visual assay for lysine in food samples. 相似文献
45.
Acireductone dioxygenase (ARD) from Klebsiella ATCC 8724 is a metalloenzyme that is capable of catalyzing different reactions with the same substrates (acireductone and O2) depending upon the metal bound in the active site. A model for the solution structure of the paramagnetic Ni2+-containing ARD has been refined using residual dipolar couplings (RDCs) measured in two media. Additional dihedral restraints
based on chemical shift (TALOS) were included in the refinement, and backbone structure in the vicinity of the active site
was modeled from a crystallographic structure of the mouse homolog of ARD. The incorporation of residual dipolar couplings
into the structural refinement alters the relative orientations of several structural features significantly, and improves
local secondary structure determination. Comparisons between the solution structures obtained with and without RDCs are made,
and structural similarities and differences between mouse and bacterial enzymes are described. Finally, the biological significance
of these differences is considered. 相似文献
46.
47.
Yang CS Lee JS Rodgers M Min CK Lee JY Kim HJ Lee KH Kim CJ Oh B Zandi E Yue Z Kramnik I Liang C Jung JU 《Cell host & microbe》2012,11(3):264-276
Phagocytosis and autophagy are two important and related arms of the host's first-line defense against microbial invasion. Rubicon is a RUN domain containing cysteine-rich protein that functions as part of a Beclin-1-Vps34-containing autophagy complex. We report that Rubicon is also an essential, positive regulator of the NADPH oxidase complex. Upon microbial infection or Toll-like-receptor 2 (TLR2) activation, Rubicon interacts with the p22phox subunit of the NADPH oxidase complex, facilitating its phagosomal trafficking to induce a burst of reactive oxygen species (ROS) and inflammatory cytokines. Consequently, ectopic expression or depletion of Rubicon profoundly affected ROS, inflammatory cytokine production, and subsequent antimicrobial activity. Rubicon's actions in autophagy and in the NADPH oxidase complex are functionally and genetically separable, indicating that Rubicon functions in two ancient innate immune machineries, autophagy and phagocytosis, depending on the environmental stimulus. Rubicon may thus be pivotal to generating an optimal intracellular immune response against microbial infection. 相似文献
48.
Hye Min Kim Min Jin Lee Ji Young Jung Chung Yeon Hwang Mincheol Kim Hee-Myong Ro Jongsik Chun Yoo Kyung Lee 《Journal of microbiology (Seoul, Korea)》2016,54(11):713-723
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure. 相似文献
49.
50.