首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19610篇
  免费   2029篇
  国内免费   2774篇
  24413篇
  2024年   59篇
  2023年   311篇
  2022年   612篇
  2021年   932篇
  2020年   677篇
  2019年   930篇
  2018年   865篇
  2017年   707篇
  2016年   886篇
  2015年   1267篇
  2014年   1479篇
  2013年   1542篇
  2012年   1871篇
  2011年   1719篇
  2010年   1140篇
  2009年   1053篇
  2008年   1202篇
  2007年   1035篇
  2006年   948篇
  2005年   844篇
  2004年   749篇
  2003年   677篇
  2002年   617篇
  2001年   415篇
  2000年   323篇
  1999年   283篇
  1998年   179篇
  1997年   147篇
  1996年   109篇
  1995年   70篇
  1994年   84篇
  1993年   48篇
  1992年   80篇
  1991年   63篇
  1990年   69篇
  1989年   47篇
  1988年   36篇
  1987年   30篇
  1986年   43篇
  1985年   30篇
  1984年   20篇
  1983年   28篇
  1982年   15篇
  1981年   17篇
  1979年   23篇
  1978年   13篇
  1977年   15篇
  1976年   14篇
  1975年   15篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Ge J  Yan H  Li S  Nie W  Dong K  Zhang L  Zhu W  Fan F  Zhu J 《Proteomics》2011,11(10):1893-1902
Increasing evidence suggests that dendritic cells (DCs) and oxidized low-density lipoprotein (ox-LDL) participate in atherosclerosis. However, few data on the molecular mechanisms of this process are available. To address this question, we used iTRAQ labeling followed by LC-MS/MS analysis to identify many proteins that changed markedly during the maturation of dendritic cells stimulated with ox-LDL. Among a total of 781 identified proteins, 93 were upregulated and 100 were downregulated. The major and significant changes in upregulated proteins were that ox-LDL not only affected the levels of intracellular cathepsins G, Z, D and S, but also significantly enhanced cathepsin S secretion by the treated cells. Our results may provide clues for a more comprehensive understanding the pathogenesis of atherosclerosis.  相似文献   
122.
123.
124.
High-throughput structural biology is a focus of a number of academic and pharmaceutical laboratories around the world. The use of X-ray crystallography in these efforts is critically dependent on high-throughput protein crystallization. The application of current protocols yields crystal leads for approximately 30% of the input proteins and well-diffracting crystals for a smaller fraction. Increasing the success rate will require a multidisciplinary approach that must invoke techniques from molecular biology, protein biochemistry, biophysics, artificial intelligence, and automation.  相似文献   
125.
Ehrhardt A  Xu H  Kay MA 《Journal of virology》2003,77(13):7689-7695
Previously we showed that recombinant adenoviral helper-dependent (HD) vectors result in long-term transgene expression levels in vivo which slowly declined by 95% over a period of 1 year. In this study, we further establish that this was not predominantly immune mediated. To determine if cell turnover was responsible for the loss of transgene expression, we induced rapid hepatocyte cell cycling in mouse liver, by performing a surgical two-thirds partial hepatectomy. We observed a 55 and 65% reduction in transgene expression levels and a 50 and 71% loss of vector genomes for the HD vector and the first-generation adenoviral vector. In sharp contrast, in nonviral, episomal plasmid DNA-injected mice, transgene expression levels and DNA copy numbers decreased by 95 and 99%, respectively. These findings suggest that cell division alone was not the primary reason for the slow decrease in transgene expression levels and that recombinant adenoviral vectors have a more robust mechanism for maintaining persistence during cell cycling. Several potential mechanisms are proposed.  相似文献   
126.
Sphingosine 1-phosphate (S1P) is the ligand for a family of specific G protein-coupled receptors (GPCRs) that regulate a wide variety of important cellular functions, including growth, survival, cytoskeletal rearrangements, and cell motility. However, whether it also has an intracellular function is still a matter of great debate. Overexpression of sphingosine kinase type 1, which generated S1P, induced extensive stress fibers and impaired formation of the Src-focal adhesion kinase signaling complex, with consequent aberrant focal adhesion turnover, leading to inhibition of cell locomotion. We have dissected biological responses dependent on intracellular S1P from those that are receptor-mediated by specifically blocking signaling of Galphaq, Galphai, Galpha12/13, and Gbetagamma subunits, the G proteins that S1P receptors (S1PRs) couple to and signal through. We found that intracellular S1P signaled "inside out" through its cell-surface receptors linked to G12/13-mediated stress fiber formation, important for cell motility. Remarkably, cell growth stimulation and suppression of apoptosis by endogenous S1P were independent of GPCRs and inside-out signaling. Using fibroblasts from embryonic mice devoid of functional S1PRs, we also demonstrated that, in contrast to exogenous S1P, intracellular S1P formed by overexpression of sphingosine kinase type 1 promoted growth and survival independent of its GPCRs. Hence, exogenous and intracellularly generated S1Ps affect cell growth and survival by divergent pathways. Our results demonstrate a receptor-independent intracellular function of S1P, reminiscent of its action in yeast cells that lack S1PRs.  相似文献   
127.
Recent findings suggest that mitochondrial membrane fluidity could influence mitochondrial energy metabolism. β-sitosterol (BS) is a common plant sterol that is prevalent in plant oils, nuts, cereals and plant food products. Its chemical structure is very similar to that of cholesterol. As a cholesterol analog, BS is highly lipid soluble and largely resides in the membranes of cells or organelles where it may have an influence on the membrane fluidity. The present study reports that, with the cholesterol chelator 2-hydroxypropyl-β-cyclodextrin (HPβCD) as its carrier, BS is able to increase the fluidity of the inner mitochondrial membrane (IMM) without affecting the fluidity of the outer mitochondrial membrane (OMM), and consequently to increase the mitochondrial membrane potential (?Ψm) and mitochondrial ATP content. It has been previously proposed that a therapeutical boost in adenosine triphosphate (ATP) levels in mitochondria may be beneficial for neurodegenerative diseases such as Alzheimer’s disease (AD). Given that dietary administration of plant sterols could increase brain BS concentrations, these results may provide a better understanding of the beneficial effects of plant sterol-enriched nutrients on neurodegenerative diseases such as AD.  相似文献   
128.
A new yeast antagonist, Pichia caribbica, isolated in our laboratory from the soil collected from unsprayed orchards, was evaluated for its biocontrol capability against Rhizopus stolonifer on peaches and the possible mechanisms involved. The decay incidence and lesion diameter of Rhizopus decay of peaches treated by P. caribbica were significantly reduced compared with the control fruits, and the higher the concentration of P. caribbica, the better the efficacy of the biocontrol. Rapid colonization of the yeast in peach wounds stored at 25 °C was observed. In peaches, the activities of peroxidase (POD), catalase (CAT), and phenylalanine ammonia-lyase (PAL) were significantly induced by P. caribbica treatment compared to those of the control fruits. All these results indicated that P. caribbica has a great potential for the development of commercial formulations to control postharvest Rhizopus decay of peaches. Its modes of action were based on competition for space and nutrients with pathogens, inducement of activities of defense-related enzymes such as POD, CAT, and PAL of peaches.  相似文献   
129.
130.
【目的】γ-丁基甜菜碱羟化酶是生物体内合成L-肉碱的关键酶。从假单胞菌(Pseudomonas sp.)L-1中克隆γ-丁基甜菜碱羟化酶基因,实现其在大肠杆菌(Escherichia coli)中的高效表达,并对表达产物进行酶学性质分析,为生物转化生产L-肉碱奠定基础。【方法】通过PCR克隆γ-丁基甜菜碱羟化酶基因,并将其开放阅读框(ORF)克隆至融合表达载体pET-15b;表达产物经His.Bind Resin纯化后对BBH进行酶学性质及三维空间结构分析;并以静止细胞进行L-肉碱的转化。【结果】成功地克隆了一个γ-丁基甜菜碱羟化酶基因bbh(GenBank:JQ250036),并实现了其在E.coli中的高效表达。融合蛋白以同源二聚体的形式存在,单个亚基的分子量约46.5 kDa,最适反应温度为30℃,最适反应pH为7.5。该酶在45℃以下稳定。在pH6.0时该酶有最高的pH稳定性。以表达bbh基因的重组大肠杆菌静止细胞转化L-肉碱,L-肉碱产量可达12.7mmol/L。【结论】Pseudomonas sp.L-1γ-丁基甜菜碱羟化酶与现有报道的bbh基因有较大的差异。由该基因表达的γ-丁基甜菜碱羟化酶能有效地转化γ-丁基甜菜碱生成L-肉碱。本研究不仅丰富了γ-丁基甜菜碱羟化酶基因资源,而且为L-肉碱的生物转化提供了一种新的转化方案。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号