首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10077篇
  免费   1061篇
  国内免费   592篇
  2023年   70篇
  2022年   200篇
  2021年   348篇
  2020年   270篇
  2019年   317篇
  2018年   334篇
  2017年   247篇
  2016年   358篇
  2015年   556篇
  2014年   583篇
  2013年   667篇
  2012年   821篇
  2011年   768篇
  2010年   513篇
  2009年   458篇
  2008年   560篇
  2007年   484篇
  2006年   469篇
  2005年   421篇
  2004年   437篇
  2003年   390篇
  2002年   352篇
  2001年   275篇
  2000年   222篇
  1999年   199篇
  1998年   89篇
  1997年   85篇
  1996年   66篇
  1995年   54篇
  1994年   70篇
  1993年   49篇
  1992年   87篇
  1991年   89篇
  1990年   58篇
  1989年   64篇
  1988年   70篇
  1987年   60篇
  1986年   51篇
  1985年   62篇
  1984年   44篇
  1983年   36篇
  1982年   26篇
  1981年   22篇
  1979年   36篇
  1978年   29篇
  1977年   22篇
  1976年   21篇
  1975年   25篇
  1974年   26篇
  1973年   31篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
Chiu CH  Tang P  Chu C  Hu S  Bao Q  Yu J  Chou YY  Wang HS  Lee YS 《Nucleic acids research》2005,33(5):1690-1698
Salmonella enterica serovar Choleraesuis (S.Choleraesuis), a highly invasive serovar among non-typhoidal Salmonella, usually causes sepsis or extra-intestinal focal infections in humans. S.Choleraesuis infections have now become particularly difficult to treat because of the emergence of resistance to multiple antimicrobial agents. The 4.7 Mb genome sequence of a multidrug-resistant S.Choleraesuis strain SC-B67 was determined. Genome wide comparison of three sequenced Salmonella genomes revealed that more deletion events occurred in S.Choleraesuis SC-B67 and S.Typhi CT18 relative to S.Typhimurium LT2. S.Choleraesuis has 151 pseudogenes, which, among the three Salmonella genomes, include the highest percentage of pseudogenes arising from the genes involved in bacterial chemotaxis signal-transduction pathways. Mutations in these genes may increase smooth swimming of the bacteria, potentially allowing more effective interactions with and invasion of host cells to occur. A key regulatory gene of TetR/AcrR family, acrR, was inactivated through the introduction of an internal stop codon resulting in overexpression of AcrAB that appears to be associated with ciprofloxacin resistance. While lateral gene transfer providing basic functions to allow niche expansion in the host and environment is maintained during the evolution of different serovars of Salmonella, genes providing little overall selective benefit may be lost rapidly. Our findings suggest that the formation of pseudogenes may provide a simple evolutionary pathway that complements gene acquisition to enhance virulence and antimicrobial resistance in S.Choleraesuis.  相似文献   
962.
The −1 ribosomal frameshifting requires the existence of an in cis RNA slippery sequence and is promoted by a downstream stimulator RNA. An atypical RNA pseudoknot with an extra stem formed by complementary sequences within loop 2 of an H-type pseudoknot is characterized in the severe acute respiratory syndrome coronavirus (SARS CoV) genome. This pseudoknot can serve as an efficient stimulator for −1 frameshifting in vitro. Mutational analysis of the extra stem suggests frameshift efficiency can be modulated via manipulation of the secondary structure within the loop 2 of an infectious bronchitis virus-type pseudoknot. More importantly, an upstream RNA sequence separated by a linker 5′ to the slippery site is also identified to be capable of modulating the −1 frameshift efficiency. RNA sequence containing this attenuation element can downregulate −1 frameshifting promoted by an atypical pseudoknot of SARS CoV and two other pseudoknot stimulators. Furthermore, frameshift efficiency can be reduced to half in the presence of the attenuation signal in vivo. Therefore, this in cis RNA attenuator represents a novel negative determinant of general importance for the regulation of −1 frameshift efficiency, and is thus a potential antiviral target.  相似文献   
963.
A major development in smooth muscle research in recent years is the recognition that the myofilament lattice of the muscle is malleable. The malleability appears to stem from plastic rearrangement of contractile and cytoskeletal filaments in response to stress and strain exerted on the muscle cell, and it allows the muscle to adapt to a wide range of cell lengths and maintain optimal contractility. Although much is still poorly understood, we have begun to comprehend some of the basic mechanisms underlying the assembly and disassembly of contractile and cytoskeletal filaments in smooth muscle during the process of adaptation to large changes in cell geometry. One factor that likely facilitates the plastic length adaptation is the ability of myosin filaments to form and dissolve at the right place and the right time within the myofilament lattice. It is proposed herein that formation of myosin filaments in vivo is aided by the various filament-stabilizing proteins, such as caldesmon, and that the thick filament length is determined by the dimension of the actin filament lattice. It is still an open question as to how the dimension of the dynamic filament lattice is regulated. In light of the new perspective of malleable myofilament lattice in smooth muscle, the roles of many smooth muscle proteins could be assigned or reassigned in the context of plastic reorganization of the contractile apparatus and cytoskeleton.  相似文献   
964.
Dragoi AM  Fu X  Ivanov S  Zhang P  Sheng L  Wu D  Li GC  Chu WM 《The EMBO journal》2005,24(4):779-789
CpG-DNA and its related synthetic CpG oligodeoxynucleotides (CpG-ODNs) play an important role in immune cell survival. It has been suggested that Akt is one of the CpG-DNA-responsive serine/threonine kinases; however, the target protein of CpG-DNA that leads to Akt activation has not been elucidated. Here, we report that ex vivo stimulation of bone marrow-derived macrophages (BMDMs) from mice lacking the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) results in defective phosphorylation and activation of Akt by CpG-DNA. Unexpectedly, loss of the Toll-like receptor 9 has a minimal effect on Akt activation in response to CpG-DNA. Further in vitro analysis using purified DNA-PK and recombinant Akt proteins reveals that DNA-PK directly induces phosphorylation and activation of Akt. In addition, in BMDMs, DNA-PKcs associates with Akt upon CpG-DNA stimulation and triggers transient nuclear translocation of Akt. Thus, our findings establish a novel role for DNA-PKcs in CpG-DNA signaling and define a CpG-DNA/DNA-PKcs/Akt pathway.  相似文献   
965.
966.
Chu HM  Yun M  Anderson DE  Sage H  Park HW  Endow SA 《The EMBO journal》2005,24(18):3214-3223
Kar3, a kinesin-14 motor of Saccharomyces cerevisiae required for mitosis and karyogamy, reportedly interacts with Cik1, a nonmotor protein, via its central, predicted coiled coil. Despite this, neither Kar3 nor Cik1 homodimers have been observed in vivo. Here we show that Kar3 is a dimer in vitro by analytical ultracentrifugation. The motor domains appear as paired particles by rotary-shadow electron microscopy (EM) and circular dichroism (CD) spectroscopy of the nonmotor region shows characteristics of helical structure, typical of coiled coils. Remarkably, the Kar3/Cik1 nonmotor region shows greater helicity by CD analysis and rotary-shadow EM reveals a stalk joined to one large or two smaller particles. The highly helical Kar3/Cik1 nonmotor region and visible stalk indicate that dimerization with Cik1 causes structural changes in Kar3. The Cik1 and Kar3 stalk regions preferentially associate with one another rather than forming homodimers. Kar3/Cik1 moves on microtubules at 2-2.4 microm min(-1), 2-5-fold faster than Kar3, and destabilizes microtubules at the lagging ends. Thus, structural changes in Kar3 upon dimerization with Cik1 alter the motor velocity and likely regulate Kar3 activity in vivo.  相似文献   
967.
968.
The pathogenic bacterium Pseudomonas aeruginosa uses acyl-HSL quorum-sensing signals to regulate genes controlling virulence and biofilm formation. We found that paraoxonase 1 (PON1), a mammalian lactonase with an unknown natural substrate, hydrolyzed the P. aeruginosa acyl-HSL 3OC12-HSL. In in vitro assays, mouse serum-PON1 was required and sufficient to degrade 3OC12-HSL. Furthermore, PON2 and PON3 also degraded 3OC12-HSL effectively. Serum-PON1 prevented P. aeruginosa quorum-sensing and biofilm formation in vitro by inactivating the quorum-sensing signal. Although 3OC12-HSL production by P. aeruginosa was important for virulence in a mouse sepsis model, Pon1-knock-out mice were paradoxically protected. These mice showed increased levels of PON2 and PON3 mRNA in epithelial tissues suggesting a possible compensatory mechanism. Thus, paraoxonase interruption of bacterial communication represents a novel mechanism to modulate quorum-sensing by bacteria. The consequences for host immunity are yet to be determined.  相似文献   
969.
The most common enteric colibacillosis in neonatal and newborns is caused by enterotoxigenic Escherichia coli(ETEC). Colonization of ETEC in the small intestine is associated with adhesions using fimbriae, which is known as a specific adhesion factor and provides highly specific means for anchoring and prerequisite for an infectious agent. In the present study we have engineered Lactobacillus acidophilus to produce recombinant K99 fimbriae, which is used for the colonization to the intestine of pigs. The expression of K99 fimbrial protein was confirmed using SDS-PAGE, immunoblot and agglutination analyses. To evaluate a function of the K99 fimbrial protein, inhibition and competition tests were performed on pre-screened intestinal brush border from pigs. The tests showed that recombinant L. acidophilus, not control L. acidophilus, had a significant inhibitory effect to and competition against K99+ E. coli in a dose dependent manner. In conclusion, we demonstrated that recombinant K99 fimbriae producing L. acidophilus was able to prevent E. coli binding to intestinal brush border.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号