首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   3篇
  45篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   7篇
  2012年   4篇
  2011年   4篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  2001年   1篇
  1992年   1篇
排序方式: 共有45条查询结果,搜索用时 0 毫秒
11.
Praziquantel (PZQ) is an acylated quinoline-pyrazine originally developed for veterinary application but now one of the most used anti-helminthic drugs for treatment of certain trematodes and cestodes in both human and other animals. The present study investigated the mutagenic and physiological responses in the juveniles of African catfish, Clarias gariepinus following short term exposure to praziquantel. Based on the 53.52 mg/l 96 h LC50 of PZQ obtained, two sublethal concentrations of 5.35 and 10.70 mg/l of the drug were selected and fish were exposed to these concentrations and control for 15 days. Micronuclei induction in the peripheral blood of PZQ-exposed fish was highest on day 10 but the fish morphological parameters were not affected. The packed cell volume (PCV) was significantly reduced (p < 0.05) from day 5 while red blood cells (RBC) and hemoglobin (Hb) significantly declined (p < 0.05) on day 15. Macrocytic anemia was observed on day 1 of study and thereafter microcytic anemia developed on day 5 of study. The white blood cell (WBC) was significantly (p < 0.05) elevated from day 10 of exposure while values of mean cellular volume (MCV), mean cellular hemoglobin (MCH) and mean cellular hemoglobin concentration (MCHC) were not significantly different (p > 0.05) from the control. Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and glucose levels significantly increased while protein reduced (p < 0.05) throughout the exposure period but a mixed trend was observed in the leukocyte differentials. PZQ should be used with caution as sublethal exposure elicited micronucleus induction and alterations of hematological and biochemical parameters in the fish.  相似文献   
12.
Rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from petroleum-contaminated soil was investigated. The effects of carbon, nitrogen and carbon to nitrogen ratio on biosurfactant production were examined using mineral salts medium as the growth medium. The tenso-active properties (surface activity and critical micelle concentrations of the produced biosurfactant were also evaluated. The best carbon source, nitrogen source were glucose and sodium nitrate giving rhamnolipid yields of 5.28 and 4.38 g l−1, respectively. The maximum rhamnolipid production of 5.46 g l−1 was at C/N (glucose/sodium nitrate) of 22. The rhamnolipid biosurfactant reduced the surface tension of water from 72 to ~37 mN/m. It also has critical micelle concentration of ~28 mg l−1. Thus, the results presented in our reports show that the produced rhamnolipid can find wide applications in various bioremediation activities such as enhanced oil recovery and petroleum degradation.  相似文献   
13.
Synthesis of the poly(A) tail of mRNA in Saccharomyces cerevisiae requires recruitment of the polymerase Pap1 to the 3' end of cleaved pre-mRNA. This is made possible by the tethering of Pap1 to the Cleavage/Polyadenylation Factor (CPF) by Fip1. We have recently reported that Fip1 is an unstructured protein in solution, and proposed that it might maintain this conformation as part of CPF, when bound to Pap1. However, the role that this feature of Fip1 plays in 3' end processing has not been investigated. We show here that Fip1 has a flexible linker in the middle of the protein, and that removal or replacement of the linker affects the efficiency of polyadenylation. However, the point of tethering is not crucial, as a fusion protein of Pap1 and Fip1 is fully functional in cells lacking genes encoding the essential individual proteins, and directly tethering Pap1 to RNA increases the rate of poly(A) addition. We also find that the linker region of Fip1 provides a platform for critical interactions with other parts of the processing machinery. Our results indicate that the Fip1 linker, through its flexibility and protein/protein interactions, allows Pap1 to reach the 3' end of the cleaved RNA and efficiently initiate poly(A) addition.  相似文献   
14.
Hessian fly, Mayetiola destructor (Say), and Sunn pest, Eurygaster integriceps (Puton), are the two most damaging insect pests of wheat in North Africa, West and Central Asia. Host plant resistance is the most environmental friendly, cost-effective and practical means of controlling insect pests. Twenty synthetic hexaploid wheat lines selected as resistant to Syrian Sunn pest in 2010 were screened for resistance to Moroccan Hessian fly biotype in 2016. The Hessian fly screening was carried out in standard greenhouse flats using a randomized complete block design with three replications, with susceptible and resistant checks in every test flat. The results showed that three synthetic hexaploid wheat lines exhibited resistance to both Moroccan Hessian fly biotype and Syrian Sunn pest. This is the first record of combined resistance to these two pests in wheat. Mapping populations using these sources of resistance are being developed using double haploid techniques for subsequent genetic characterization and identification of linked molecular markers for marker assisted selection.  相似文献   
15.
Use of genetic diversity from related wild and domesticated species has made a significant contribution to improving wheat productivity. Synthetic hexaploid wheats (SHWs) exhibit natural genetic variation for resistance and/or tolerance to biotic and abiotic stresses. Stripe rust caused by (Puccinia striiformis f. sp. tritici; Pst), is an important disease of wheat worldwide. To characterise loci conferring resistance to stripe rust in SHWs, we conducted a genome-wide association study (GWAS) with a panel of 181 SHWs using the wheat 9K SNP iSelect array. The SHWs were evaluated for their response to the prevailing races of Pst at the seedling and adult plant stages, the latter in replicated field trials at two sites in Ethiopia in 2011. About 28% of the SHWs exhibited immunity at the seedling stage while 56% and 83% were resistant to Pst at the adult plant stage at Meraro and Arsi Robe, respectively. A total of 27 SNPs in nine genomic regions (1BS, 2AS, 2BL, 3BL, 3DL, 5A, 5BL, 6DS and 7A) were linked with resistance to Pst at the seedling stage, while 38 SNPs on 18 genomic regions were associated with resistance at the adult plant stage. Six genomic regions were commonly detected at both locations using a mixed linear model corrected for population structure, kinship relatedness and adjusted for false discovery rate (FDR). The loci on chromosome regions 1AS, 3DL, 6DS and 7AL appeared to be novel QTL; our results confirm that resynthesized wheat involving its progenitor species is a rich source of new stripe (yellow) rust resistance that may be useful in choosing SHWs and incorporating diverse yellow rust (YR) resistance loci into locally adapted wheat cultivars.  相似文献   
16.
In yeast, the mRNA processing enzyme poly(A) polymerase is tethered to the much larger 3'-end processing complex via Fip1, a 36 kDa protein of unknown structure. We report the 2.6 A crystal structure of yeast poly(A) polymerase in complex with a peptide containing residues 80-105 of Fip1. The Fip1 peptide binds to the outside surface of the C-terminal domain of the polymerase. On the basis of this structure, we designed a mutant of the polymerase (V498Y, C485R) that is lethal to yeast. The mutant is unable to bind Fip1 but retains full polymerase activity. Fip1 is found in all eukaryotes and serves to connect poly(A) polymerase to pre-mRNA processing complexes in yeast, plants, and mammals. However, the Fip1 sequence is highly divergent, and residues on both Pap1 and Fip1 at the observed interaction surface are poorly conserved. Herein we demonstrate using analytical ultracentrifugation, circular dichroism, proteolytic studies, and other techniques that, in the absence of Pap1, Fip1 is largely, if not completely, unfolded. We speculate that flexibility may be important for Fip1's function as a molecular scaffold.  相似文献   
17.
Bread wheat lines introgressed with Aegilops ventricosa chromosomes were evaluated for their resistance to the Australian cereal cyst nematode (CCN, Heterodera avenae) pathotype Ha13. Higher levels of resistance relative to the phenotype of the Cre1 CCN resistance gene in wheat were found in the donor Ae. ventricosa parental lines and chromosome-5Nv substitution or addition lines. The newly identified resistance to pathotype Ha13 on chromosome 5Nv, designated, Cre6, was shown to be independent of the Ae. ventricosa-derived Cre2 gene, effective against several European pathotypes. Another Ae. ventricosa derived gene, Cre5, showed partial resistance to pathotype Ha13. Inhibition of Ha13 female nematode reproduction was ranked in the order Cre6 >Cre1 >CreFCre5. Cre6 was inherited as a single dominant locus. Gene sequences encoding nucleotide-binding sites and leucine-rich repeats (NBS-LRR) from the Cre3 CCN-pathotype Ha13 resistance locus were used as probes to isolate related sequences from one of the donor Ae. ventricosa parents. Related sequences from Ae. ventricosa (71–73% similarity at the amino-acid level to the Cre3-derived sequences) of chromosome 5Nv origin were identified and served as diagnostic molecular markers for the presence of 5Nv. CCN-susceptible plants, found as variants in some of the purported chromosome 5Nv lines, were also found to be missing the diagnostic 5Nv RFLP markers assayed by the NBS-LRR probe. An alloplasmic chromosome-5Nv addition line with Ae. ventricosa cytoplasm in the wheat cultivar, Moisson, background was particularly variable, with 43% CCN-susceptible plants and a corresponding loss of the diagnostic chromosome-5 molecular markers. Received: 26 June 2000 / Accepted: 15 July 2000  相似文献   
18.

Objective

To investigate a syntrophic interaction between Geobacter sulfurreducens and hydrogenotrophic methanogens in sludge-inoculated microbial fuel cell (MFC) systems running on glucose with an improved electron recovery at the anode.

Results

The presence of archaea in MFC reduces Coulombic efficiency (CE) due to their electron scavenging capability but, here, we demonstrate that a syntrophic interaction can occur between G. sulfurreducens and hydrogenotrophic methanogens via interspecies H2 transfer with improvement in CE and power density. The addition of the methanogenesis inhibitor, 2-bromoethanesulfonate (BES), resulted in the reduction in power density from 5.29 to 2 W/m3, and then gradually increased to the peak value of 5.5 W/m3 when BES addition was stopped.

Conclusion

Reduction of H2 partial pressure by archaea is an efficient approach in improving power output in a glucose-fed MFC system using Geobacter sp. as an inoculum.
  相似文献   
19.
The cereal cyst nematode (CCN; Heterodera avenae), a root disease of cereal crops, is a major economic constraint in many wheat (Triticum aestivum)-growing areas of the world. The objective of this study was to assess the impact of the Cre1, Cre8 and Cre3 genes on CCN resistance. A population of 92 doubled-haploid (DH) lines derived from a cross between wheat cvs. Frame and Silverstar as well as 1,851 wheat breeding lines were screened for CCN resistance at the Primary Industries Research Victoria (PIRVic). A second population of 9,470 wheat breeding lines was screened at the South Australian Research and Development Institute (SARDI). Cre3 had the largest impact on reducing the number of female cysts, followed by Cre1 and Cre8. There was no significant difference in number of cysts between DH lines with or without the Cre8 marker, suggesting that the marker is not perfectly linked to Cre8. The estimated heritabilities were 0.32 in the DH population, 0.48 in the PIRVic data set and 0.32 in the SARDI data set, which confirm that this is a trait of low heritability. The repeatability of CCN resistance improved with an increase in the number of plants assessed per line—up to ten. However, 85–88% of the improvement was achieved with the assessments of the first five plants.  相似文献   
20.
Insect pests cause substantial damage to wheat production in many wheat-producing areas of the world. Amongst these, Hessian fly (HF), Russian wheat aphid (RWA), Sunn pest (SP), wheat stem saw fly (WSSF) and cereal leaf beetle (CLB) are the most damaging in the areas where they occur. Historically, the use of resistance genes in wheat has been the most effective, environmentally friendly, and cost-efficient approach to controlling pest infestations. In this study, we carried out a genome-wide association study with 2518 Diversity Arrays Technology markers which were polymorphic on 134 wheat genotypes with varying degrees of resistance to the five most destructive pests (HF, RWA, SP, WSSF and CLB) of wheat, using mixed linear model (MLM) analysis with population structure as a covariate. We identified 26 loci across the wheat genome linked to genes conferring resistance to these pests, of which 20 are potentially novel quantitative trait loci with significance values which ranged between 5 × 10?3 and 10?11. We used an in silico approach to identify probable candidate genes at some of the genomic regions and found that their functions varied from defense response with transferase activity to several genes of unknown function. Identification of potentially new loci associated with resistances to pests would contribute to more rapid marker-aided incorporation of new and diverse genes to develop new varieties with improved resistance against these pests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号