首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   13篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   8篇
  2013年   8篇
  2012年   12篇
  2011年   12篇
  2010年   19篇
  2009年   11篇
  2008年   8篇
  2007年   10篇
  2006年   11篇
  2005年   10篇
  2004年   13篇
  2003年   8篇
  2002年   13篇
  2001年   2篇
  2000年   2篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1982年   1篇
  1980年   2篇
  1970年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
21.
The troponin (Tn) complex is formed by TnC, TnI and TnT and is responsible for the calcium-dependent inhibition of muscle contraction. TnC and TnI interact in an antiparallel fashion in which the N domain of TnC binds in a calcium-dependent manner to the C domain of TnI, releasing the inhibitory effect of the latter on the actomyosin interaction. While the crystal structure of the core cardiac muscle troponin complex has been determined, very little high resolution information is available regarding the skeletal muscle TnI-TnC complex. With the aim of obtaining structural information regarding specific contacts between skeletal muscle TnC and TnI regulatory domains, we have constructed two recombinant chimeric proteins composed of the residues 1-91 of TnC linked to residues 98-182 or 98-147 of TnI. The polypeptides were capable of binding to the thin filament in a calcium-dependent manner and to regulate the ATPase reaction of actomyosin. Small angle X-ray scattering results showed that these chimeras fold into compact structures in which the inhibitory plus the C domain of TnI, with the exception of residues 148-182, were in close contact with the N-terminal domain of TnC. CD and fluorescence analysis were consistent with the view that the last residues of TnI (148-182) are not well folded in the complex. MS analysis of fragments produced by limited trypsinolysis showed that the whole TnC N domain was resistant to proteolysis, both in the presence and in the absence of calcium. On the other hand the TnI inhibitory and C-terminal domains were completely digested by trypsin in the absence of calcium while the addition of calcium results in the protection of only residues 114-137.  相似文献   
22.
The recently sequenced genome of the bacterial plant pathogen Xanthomonas axonopodis pv. citri contains two virB gene clusters, one on the chromosome and one on a 64-kb plasmid, each of which codes for a previously uncharacterized type IV secretion system (T4SS). Here we used a yeast two-hybrid assay to identify protein-protein interactions in these two systems. Our results revealed interactions between known T4SS components as well as previously uncharacterized interactions involving hypothetical proteins coded by open reading frames in the two X. axonopodis pv. citri virB loci. Our results indicate that both loci may code for previously unidentified VirB7 proteins, which we show interact with either VirB6 or VirB9 or with a hypothetical protein coded by the same locus. Furthermore, a set of previously uncharacterized Xanthomonas proteins have been found to interact with VirD4, whose gene is adjacent to the chromosomal virB locus. The gene for one member of this family is found within the chromosomal virB locus. All these uncharacterized proteins possess a conserved 120-amino-acid domain in their C termini and may represent a family of cofactors or substrates of the Xanthomonas T4SS.  相似文献   
23.
Wen CK  Goh MC 《Proteins》2006,64(1):227-233
Nanodissection of single fibrous long spacing (FLS) type collagen fibrils by atomic force microscopy (AFM) reveals hierarchical internal structure: Fibrillar subcomponents with diameters of approximately 10 to 20 nm were observed to be running parallel to the long axis of the fibril in which they are found. The fibrillar subcomponent displayed protrusions with characteristic approximately 270 nm periodicity, such that protrusions on neighboring subfibrils were aligned in register. Hence, the banding pattern of mature FLS-type collagen fibrils arises from the in-register alignment of these fibrillar subcomponents. This hierarchical organization observed in FLS-type collagen fibrils is different from that previously reported for native-type collagen fibrils, displaying no supercoiling at the level of organization observed.  相似文献   
24.
In the present study, we observed that the Golgi-SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) GS28 forms a complex with p53 in HEK (human embryonic kidney)-293 cells. Given that p53 represents a tumour suppressor that affects the sensitivity of cancer cells to various chemotherapeutic drugs, we examined whether GS28 may influence the level of sensitivity to the DNA-damaging drug cisplatin. Indeed, knockdown of GS28 using short-hairpin RNA (shGS28) induced resistance to cisplatin in HEK-293 cells. On the other hand, overexpression of GS28 sensitized HEK-293 cells to cisplatin, whereas no sensitization effect was noted for the mitotic spindle-damaging drugs vincristine and taxol. Accordingly, we observed that knockdown of GS28 reduced the accumulation of p53 and its pro-apoptotic target Bax. Conversely, GS28 overexpression induced the accumulation of p53 and Bax as well as the pro-apoptotic phosphorylation of p53 on Ser(46). Further experiments showed that these cellular responses could be abrogated by the p53 inhibitor PFT-α (pifithrin-α), indicating that GS28 may affect the stability and activity of p53. The modulatory effects of GS28 on cisplatin sensitivity and p53 stability were absent in lung cancer H1299 cells which are p53-null. As expected, ectopic expression of p53 in H1299 cells restored the modulatory effects of GS28 on sensitivity to cisplatin. In addition, GS28 was found to form a complex with the p53 E3 ligase MDM2 (murine double minute 2) in H1299 cells. Furthermore, the ubiquitination of p53 was reduced by overexpression of GS28 in cells, confirming that GS28 enhances the stability of the p53 protein. Taken together, these results suggest that GS28 may potentiate cells to DNA-damage-induced apoptosis by inhibiting the ubiquitination and degradation of p53.  相似文献   
25.
26.
Bermudagrass (Cynodon spp.) is extensively cultivated for forage and turf in the the southern United States and in parts of Asia, Africa, southern Europe, Australia and South America. However, few simple sequence repeat (SSR) markers are available for bermudagrass genetics research. Accordingly, the objective of this study was to develop SSR markers in bermudagrass by transferring sorghum genomic SSR primers and by exploring bermudagrass expressed sequence tags (ESTs) from the National Center for Biotechnology Information (NCBI) database. The transferability of 354 tested sorghum SSRs was 57% to C. transvaalensis T577 (2n = 2x = 18), 27% to C. dactylon Tifton 10 (2n = 6x = 54) and 22% to Zebra (2n = 4x = 36). Among the transferred SSRs, 65 primer pairs generated reproducible SSR bands across the three genotypes. From 20,237 Cynodon ESTs at NCBI, 303 designed SSR primer pairs amplified target bands in at least one of C. dactylon var. aridus (2n = 2x = 18), C. transvaalensis T577, C. dactylon cv. Tifton 10, and C. dactylon var. dactylon Zebra. Of the effective EST SSRs, 230 primer pairs produced reproducible bands in all four genotypes. The study demonstrated that EST sequences and sorghum SSR primers are useful sources for the development of SSR markers for bermudagrass. The developed SSR markers will make a valuable contribution to the molecular identification of commercial cultivars, construction of genetic maps, and marker-assisted breeding in bermudagrass.  相似文献   
27.
Fine mapping a QTL for carbon isotope composition in tomato   总被引:1,自引:1,他引:0  
Carbon isotope composition (delta(13)C) and leaf water-use efficiency vary in concert in C3 plants, making delta(13)C useful as a proxy for plant water-use efficiency. A QTL for delta(13)C was detected in the Solanum pennellii chromosome fragment of IL5-4, an introgression line with S. lycopersicum cv. M82 background. M82 and IL 5-4 were crossed, and RFLP markers in the target region converted to PCR-based markers. Forty-one recombinants with an introgression fragment ranging in length from 1.1 to 11.4 cM were identified by marker assisted selection (MAS) among approximately 2000 F2 plants. A total of 29 markers were mapped within the introgression fragment unique to IL5-4. These markers divided the about 9 cM target region into nine intervals. A dominant QTL for delta(13)C, designated QWUE5.1 that explained 25.6% of the total phenotypic variance was mapped to an interval about 2.2 cM long. Twenty-one plants with a S. pennellii chromosome fragment shortened to a length of 2.0-9.1 cM by a second recombination event were generated by MAS of 1,125 F4 plants. Two near isogenic lines with high delta(13)C (small negative value) and carrying QWUE5.1 on the shortest introgression fragments (about 7.0 cM) were identified. The markers and genetic stocks developed are valuable for cloning the gene underlying QWUE5.1, MAS of QWUE5.1, and fine-mapping genes/QTL located in this region.  相似文献   
28.
Shortleaf and loblolly pine trees (n = 93 and 102, respectively) from 22 seed sources of the Southwide Southern Pine Seed Source Study plantings or equivalent origin were evaluated for amplified fragment length polymorphism (AFLP) variation. These sampled trees represent shortleaf pine and loblolly pine, as they existed across their native geographic ranges before intensive forest management. Using 17 primer pairs, a total of 96 AFLPs between shortleaf pine and loblolly pine were produced and scored on the sample trees and two control-pollinated F1 interspecies hybrids and their parents. In addition, the well known isocitrate dehydrogenase (IDH) isozyme marker was scored for all trees. IDH detected two putative hybrids among the loblolly pine samples and two among the shortleaf pine samples, while either 13 or 12 putative hybrids were detected using all AFLP markers and IDH and either NewHybrids or Structure software, respectively. Results of this study show that later generation hybrids can be reliably identified using AFLP markers and confirmed that IDH is not a definitive marker for detecting hybrids; that is, at least in some seed sources, the alternative species’ IDH allele resides in the source species. Based on all the markers, hybridization frequency varied geographically, ranging from 30% in an Arkansas seed source to 0% in several other seed sources. The hybridization level was higher in populations west of the Mississippi River than in populations east of the river; the shortleaf pine hybridization rates were 16.3% and 2.4% and the loblolly pine rates were 4.5% and 3.3%, west and east of the river, respectively. The results suggest that hybridization between these two species is significant but varies by seed source and species, and the potential for the unintended creation of hybrids should be considered in forest management decisions regarding both natural and artificial regeneration.  相似文献   
29.
30.
Tropomyosin is a 284 residue dimeric coiled-coil protein that interacts in a head-to-tail manner to form linear filaments at low ionic strengths. Polymerization is related to tropomyosin's ability to bind actin, and both properties depend on intact N- and C-termini as well as alpha-amino acetylation of the N-terminus of the muscle protein. Nalpha-acetylation can be mimicked by an N-terminal Ala-Ser fusion in recombinant tropomyosin (ASTm) produced in Escherichia coli. Here we show that a recombinant tropomyosin fragment, corresponding to the protein's first 260 residues plus an Ala-Ser fusion [ASTm(1-260)], polymerizes to a much greater extent than the corresponding full-length recombinant protein, despite the absence of the C-terminal 24 amino acids. This polymerization is sensitive to ionic strength and is greatly reduced by the removal of the N-terminal Ala-Ser fusion [nfTm(1-260)]. CD studies show that nonpolymerizable tropomyosin fragments, which terminate at position 260 [Tm(167-260) and Tm(143-260)], as well as Tm(220-284), are able to interact with ASTm(1-142), a nonpolymerizable N-terminal fragment, and that the head-to-tail interactions observed for these fragment pairs are accompanied by a significant degree of folding of the C-terminal tropomyosin fragment. These results suggest that the new C-terminus, created by the deletion, polymerizes in a manner similar to the full-length protein. Head-to-tail binding for fragments terminating at position 260 may be explained by the presence of a greater concentration of negatively charged residues, while, at the same time, maintaining a conserved pattern of charged and hydrophobic residues found in polymerizable tropomyosins from a variety of sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号