首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8930篇
  免费   640篇
  国内免费   466篇
  2024年   8篇
  2023年   72篇
  2022年   129篇
  2021年   322篇
  2020年   230篇
  2019年   265篇
  2018年   282篇
  2017年   231篇
  2016年   321篇
  2015年   462篇
  2014年   578篇
  2013年   638篇
  2012年   742篇
  2011年   703篇
  2010年   414篇
  2009年   371篇
  2008年   424篇
  2007年   416篇
  2006年   372篇
  2005年   362篇
  2004年   292篇
  2003年   299篇
  2002年   241篇
  2001年   195篇
  2000年   193篇
  1999年   162篇
  1998年   108篇
  1997年   102篇
  1996年   104篇
  1995年   101篇
  1994年   78篇
  1993年   78篇
  1992年   127篇
  1991年   102篇
  1990年   72篇
  1989年   72篇
  1988年   66篇
  1987年   49篇
  1986年   41篇
  1985年   53篇
  1984年   33篇
  1983年   25篇
  1982年   19篇
  1981年   10篇
  1979年   10篇
  1978年   6篇
  1977年   7篇
  1971年   7篇
  1970年   7篇
  1966年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
962.
Plant protein-protein interaction networks have not been identified by large-scale experiments. In order to better understand the protein interactions in rice, the Predicted Rice Interactome Network (PRIN; http://bis.zju.edu.cn/ prin/) presented 76,585 predicted interactions involving 5,049 rice proteins. After mapping genomic features of rice (GO annotation, subcellular localization prediction, and gene expression), we found that a well-annotated and biologically significant network is rich enough to capture many significant functional linkages within higher-order biological systems, such as pathways and biological processes. Furthermore, we took MADS-box do- main-containing proteins and circadian rhythm signaling pathways as examples to demonstrate that functional protein complexes and biological pathways could be effectively expanded in our predicted network. The expanded molecular network in PRIN has considerably improved the capability of these analyses to integrate existing knowledge and provide novel insights into the function and coordination of genes and gene networks.  相似文献   
963.
Pan J  Chan SY  Lee WG  Kang L 《Biotechnology journal》2011,6(12):1477-1487
Micro- and nanoparticulate drug-delivery systems (DDSs) play a significant role in formulation sciences. Most particulate DDSs are scaffold-free, although some particles are encapsulated inside other biomaterials for controlled release. Despite rapid progress in recent years, challenges still remain in controlling the homogenicity of micro-/nanoparticles, especially for two crucial factors in particulate DDSs: the size and shape of the particles. Recent approaches make use of microfabrication techniques to generate micro-/nanoparticles with highly controllable architectures free of scaffolds. This review presents an overview of a burgeoning field of DDSs, which can potentially overcome some drawbacks of conventional techniques for particle fabrication and offer better control of particulate DDSs.  相似文献   
964.
Zhou L  Huang G  Wang S  Wu J  Lee WG  Chen Y  Xu F  Lu T 《Biotechnology journal》2011,6(12):1466-1476
Cell-based biosensors (CBBs) have emerged as promising biotechnical tools whereby various cell types can be used as basic sensing units to detect external stimuli. Specifically, CBBs have been applied in environmental monitoring, drug screening, clinical diagnosis and biosecurity. For these applications, CBBs offer several advantages over conventional molecular-based biosensors or living animal-based approaches, such as the capability to better mimic physiological situations, to enhance detection specificity and sensitivity, and to detect unknown compounds and toxins. On the other hand, existing CBBs suffer from several limitations, such as weak cell-substrate attachment, two-dimensional (2D) cell microenvironment, and limited shelf life. An emerging method for scaffold-free three-dimensional (3D) cell culture uses hydrogels to encapsulate cells. Advances in novel biomaterials and nano/microscale technologies have enabled encapsulation of cells in hydrogels to fabricate 3D CBBs, which hold great potential for addressing the limitation in existing 2D CBBs. Here, we present an overview of the emerging hydrogel-based CBBs, their applications in pathogen/toxin detection, drug screening and screening of cell-biomaterials interaction, and the associated challenges and potential solutions.  相似文献   
965.
Spatial isolation is currently thought to represent one of the major factors resulting in bacteria genetic variation and population abundance. The bacterial diversity in a distinct environment Zoige Alpine Wetland located in the northeast of the Qinghai-Tibetan Plateau with the altitude 3400 m on average aroused our great attention. This area belongs to Qinghai-Tibetan cold climate zone with the mean annual temperature about 1 °C. Although several studies on bacterial diversity in Qinghai-Tibetan Plateau had been reported, there is no report on wetland water in this area. In this work, six water samples were collected and the water qualities including CODCr, NH4+-N, NO3--N, NO2--N, TN, TP, TOC were investigated, of which results indicated that more than 80% samples sorted as II–V class of surface water sources according to the National Water Quality Standard of China (GB3838-2002). Comparison of bacterial communities among the six samples was analyzed by DGGE of PCR-amplified 16S rDNA with universal bacterial primer sets. The profiles demonstrated that samples from the Flower Lake had more DNA bands than the Conservatory Station inferring higher diversity. In addition, the samples from the same environment shared similar compositions of bacterial communities. Bacterial community composition and predominant bacteria were analyzed by 16S rDNA clone library. The dominant group was Proteobacteria (51.6% of the total clones, which contained 24.2% alpha proteobacteria, 14.5% beta proteobacteria and 12.9% gamma proteobacteria). And the Bacteroidetes added to 17.7%, Verrucomicrobia to 4.8%. More than 24.2% of the total clones showed high similarity to uncultured bacteria. The above work provides some information on bacterial diversity for special site of spatial isolation.  相似文献   
966.
967.
Zhang X  Yuan Q  Tang W  Gu J  Osei K  Wang J 《PloS one》2011,6(11):e27647
Our recent studies have uncovered that aggregation-prone proinsulin preserves a low relative folding rate and maintains a homeostatic balance of natively and non-natively folded states (i.e., proinsulin homeostasis, PIHO) in β-cells as a result of the integration of maturation and disposal processes. Control of precursor maturation and disposal is thus an early regulative mechanism in the insulin production of β-cells. Herein, we show pathways involved in the disposal of endogenous proinsulin at the early secretory pathway. We conducted metabolic-labeling, immunoblotting, and immunohistochemistry studies to examine the effects of selective proteasome and lysosome or autophagy inhibitors on the kinetics of proinsulin and control proteins in various post-translational courses. Our metabolic-labeling studies found that the main lysosomal and ancillary proteasomal pathways participate in the heavy clearance of insulin precursor in mouse islets/β-cells cultured at the mimic physiological glucose concentrations. Further immunoblotting and immunohistochemistry studies in cloned β-cells validated that among secretory proteins, insulin precursor is heavily and preferentially removed. The rapid disposal of a large amount of insulin precursor after translation is achieved mainly through lysosomal autophagy and the subsequent basal disposals are carried out by both lysosomal and proteasomal pathways within a 30 to 60-minute post-translational process. The findings provide the first clear demonstration that lysosomal and proteasomal pathways both play roles in the normal maintenance of PIHO for insulin production, and defined the physiological participation of lysosomal autophagy in the protein quality control at the early secretory pathway of pancreatic β-cells.  相似文献   
968.
Tong YQ  Liu B  Zheng HY  He YJ  Gu J  Li F  Li Y 《PloS one》2011,6(11):e27804
BMI-1 is overexpressed in a variety of cancers, which can elicit an immune response leading to the induction of autoantibodies. However, BMI-1 autoantibody as a biomarker has seldom been studied with the exception of nasopharyngeal carcinoma. Whether BMI-1 autoantibodies can be used as a biomarker for cervical carcinoma is unclear. In this study,BMI-1 proteins were isolated by screening of a T7 phage cDNA library from mixed cervical carcinoma tissues. We analyzed BMI-1 autoantibody levels in serum samples from 67 patients with cervical carcinoma and 65 controls using ELISA and immunoblot. BMI-1 mRNA or protein levels were over-expressed in cervical carcinoma cell lines. Immunoblot results exhibited increased BMI-1 autoantibody levels in patient sera compared to normal sera. Additionally, the results for antibody affinity assay showed that there was no difference between cervical polyps and normal sera of BMI-1 autoantibody levels, but it was significantly greater in patient sera than that in normal controls (patient 0.827±0.043 and normal 0.445±0.023; P<0.001). What''s more, the levels of BMI-1 autoantibody increased significantly at stage I (0.672±0.019) compared to normal sera (P<0.001), and levels of BMI-1 autoantibodies were increased gradually during the tumor progression (stage I 0.672±0.019; stage II 0.775 ±0.019; stage III 0.890 ±0.027; stage IV 1.043±0.041), which were significantly correlated with disease progression of cervical carcer (P<0.001). Statistical analyses using logistic regression and receiver operating characteristics (ROC) curves indicated that the BMI-1 autoantibody level can be used as a biomarker for cervical carcinoma (sensitivity 0.78 and specificity 0.76; AUC = 0.922). In conclusion, measuring BMI-1 autoantibody levels of patients with cervical cancer could have clinical prognostic value as well as a non-tissue specific biomarker for neoplasms expressing BMI-1.  相似文献   
969.

Background

Several injectable materials have been shown to preserve or improve cardiac function as well as prevent or slow left ventricular (LV) remodeling post-myocardial infarction (MI). However, it is unclear as to whether it is the structural support or the bioactivity of these polymers that lead to beneficial effects. Herein, we examine how passive structural enhancement of the LV wall by an increase in wall thickness affects cardiac function post-MI using a bio-inert, non-degradable synthetic polymer in an effort to better understand the mechanisms by which injectable materials affect LV remodeling.

Methods and Results

Poly(ethylene glycol) (PEG) gels of storage modulus G′ = 0.5±0.1 kPa were injected and polymerized in situ one week after total occlusion of the left coronary artery in female Sprague Dawley rats. The animals were imaged using magnetic resonance imaging (MRI) at 7±1 day(s) post-MI as a baseline and again post-injection 49±4 days after MI. Infarct wall thickness was statistically increased in PEG gel injected vs. control animals (p<0.01). However, animals in the polymer and control groups showed decreases in cardiac function in terms of end diastolic volume, end systolic volume and ejection fraction compared to baseline (p<0.01). The cellular response to injection was also similar in both groups.

Conclusion

The results of this study demonstrate that passive structural reinforcement alone was insufficient to prevent post-MI remodeling, suggesting that bioactivity and/or cell infiltration due to degradation of injectable materials are likely playing a key role in the preservation of cardiac function, thus providing a deeper understanding of the influencing properties of biomaterials necessary to prevent post-MI negative remodeling.  相似文献   
970.
Huang C  Gu H  Yu Q  Manukyan MC  Poynter JA  Wang M 《PloS one》2011,6(12):e29246

Background

Cardiac stem cells (CSCs) promote myocardial recovery following ischemia through their regenerative properties. However, little is known regarding the implication of paracrine action by CSCs in the setting of myocardial ischemia/reperfusion (I/R) injury although it is well documented that non-cardiac stem cells mediate cardioprotection via the production of paracrine protective factors. Here, we studied whether CSCs could initiate acute protection following global myocardial I/R via paracrine effect and what component from CSCs is critical to this protection.

Methodology/Principal Findings

A murine model of global myocardial I/R was utilized to investigate paracrine effect of Sca-1+ CSCs on cardiac function. Intracoronary delivery of CSCs or CSC conditioned medium (CSC CM) prior to ischemia significantly improved myocardial function following I/R. siRNA targeting of VEGF in CSCs did not affect CSC-preserved myocardial function in response to I/R injury. However, differentiation of CSCs to cardiomyocytes (DCSCs) abolished this protection. Through direct comparison of the protein expression profiles of CSCs and DCSCs, SDF-1 was identified as one of the dominant paracrine factors secreted by CSCs. Blockade of the SDF-1 receptor by AMD3100 or downregulated SDF-1 expression in CSCs by specific SDF-1 siRNA dramatically impaired CSC-induced improvement in cardiac function and increased myocardial damage following I/R. Of note, CSC treatment increased myocardial STAT3 activation after I/R, whereas downregulation of SDF-1 action by blockade of the SDF-1 receptor or SDF-1 siRNA transfection abolished CSC-induced STAT3 activation. In addition, inhibition of STAT3 activation attenuated CSC-mediated cardioprotection following I/R. Finally, post-ischemic infusion of CSC CM was shown to significantly protect I/R-caused myocardial dysfunction.

Conclusions/Significance

This study suggests that CSCs acutely improve post-ischemic myocardial function through paracrine factor SDF-1 and up-regulated myocardial STAT3 activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号