首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15780篇
  免费   1399篇
  国内免费   1318篇
  2024年   45篇
  2023年   232篇
  2022年   475篇
  2021年   763篇
  2020年   632篇
  2019年   714篇
  2018年   704篇
  2017年   510篇
  2016年   687篇
  2015年   1032篇
  2014年   1241篇
  2013年   1265篇
  2012年   1462篇
  2011年   1309篇
  2010年   888篇
  2009年   730篇
  2008年   782篇
  2007年   702篇
  2006年   687篇
  2005年   555篇
  2004年   484篇
  2003年   514篇
  2002年   396篇
  2001年   243篇
  2000年   211篇
  1999年   204篇
  1998年   138篇
  1997年   112篇
  1996年   115篇
  1995年   109篇
  1994年   93篇
  1993年   57篇
  1992年   78篇
  1991年   64篇
  1990年   60篇
  1989年   44篇
  1988年   28篇
  1987年   24篇
  1986年   34篇
  1985年   25篇
  1984年   13篇
  1983年   7篇
  1982年   8篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1976年   2篇
  1970年   1篇
  1962年   2篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
311.
13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid purified from soy fermentation products, induces apoptosis in human cancer cells. We investigated the inhibitory effects and mechanism of action of 13-MTD on T-cell non-Hodgkin’s lymphoma (T-NHL) cell lines both in vitro and in vivo. Growth inhibition in response to 13-MTD was evaluated by the cell counting kit-8 (CCK-8) assay in three T-NHL cell lines (Jurkat, Hut78, EL4 cells). Flow cytometry analyses were used to monitor the cell cycle and apoptosis. Proteins involved in 13-MTD-induced apoptosis were examined in Jurkat cells by western blotting. We found that 13-MTD inhibited proliferation and induced the apoptosis of T-NHL cell lines. 13-MTD treatment also induced a concentration-dependent arrest of Jurkat cells in the G1-phase. During 13-MTD-induced apoptosis in Jurkat cells, the cleavage of caspase-3 and poly ADP-ribose polymerase (PARP, a caspase enzymolysis product) were detected after incubation for 2 h, and increased after extending the incubation time. However, there was no change in the expression of Bcl-2 or c-myc proteins. The appearance of apoptotic Jurkat cells was accompanied by the inhibition of AKT and nuclear factor-kappa B (NF-κB) phosphorylation. In addition, 13-MTD could also effectively inhibit the growth of T-NHL tumors in vivo in a xenograft model. The tumor inhibition rate in the experimental group was 40%. These data indicate that 13-MTD inhibits proliferation and induces apoptosis through the down-regulation of AKT phosphorylation followed by caspase activation, which may provide a new approach for treating T-cell lymphomas.  相似文献   
312.
313.

Background

Human embryonic stem cells (hESCs) are a promising and powerful source of cells for applications in regenerative medicine, tissue engineering, cell-based therapies, and drug discovery. Many researchers have employed conventional culture techniques using feeder cells to expand hESCs in significant numbers, although feeder-free culture techniques have recently been developed. In regard to stem cell expansion, gap junctional intercellular communication (GJIC) is thought to play an important role in hESC survival and differentiation. Indeed, it has been reported that hESC-hESC communication through connexin 43 (Cx43, one of the major gap junctional proteins) is crucial for the maintenance of hESC stemness during expansion. However, the role of GJIC between hESCs and feeder cells is unclear and has not yet been reported.

Methodology/Principal Findings

This study therefore examined whether a direct Cx43-mediated interaction between hESCs and human adipose-derived stem cells (hASCs) influences the maintenance of hESC stemness. Over 10 passages, hESCs cultured on a layer of Cx43-downregulated hASC feeder cells showed normal morphology, proliferation (colony growth), and stemness, as assessed by alkaline phosphatase (AP), OCT4 (POU5F1-Human gene Nomenclature Database), SOX2, and NANOG expression.

Conclusions/Significance

These results demonstrate that Cx43-mediated GJIC between hESCs and hASC feeder cells is not an important factor for the conservation of hESC stemness and expansion.  相似文献   
314.
The prevalence of pathological germline mutations in colorectal cancer has been widely studied, as germline mutations in the DNA mismatch repair genes hMLH1 and hMSH2 confer a high risk of colorectal cancer. However, because the sample size and population of previous studies are very different from each other, the conclusions still remain controversial. In this paper, Databases such as PubMed were applied to search for related papers. The data were imported into Comprehensive Meta-Analysis V2, which was used to estimate the weighted prevalence of hMLH1 and hMSH2 pathological mutations and compare the differences of prevalence among different family histories, ethnicities and related factors. This study collected and utilized data from 102 papers. In the Amsterdam-criteria positive group, the prevalence of pathological germline mutations of the hMLH1 and hMSH2 genes was 28.55% (95%CI 26.04%–31.19%) and 19.41% (95%CI 15.88%–23.51%), respectively, and the prevalence of germline mutations in hMLH1/hMSH2 was 15.44%/10.02%, 20.43%/13.26% and 15.43%/11.70% in Asian, American multiethnic and European/Australian populations, respectively. Substitution mutations accounted for the largest proportion of germline mutations (hMLH1: 52.34%, hMSH2: 43.25%). The total prevalence of mutations of hMLH1 and hMSH2 in Amsterdam-criteria positive, Amsterdam-criteria negative and sporadic colorectal cancers was around 45%, 25% and 15%, respectively, and there were no obvious differences in the prevalence of germline mutations among different ethnicities.  相似文献   
315.
Cardiomyocyte hypertrophy induced by phenylephrine (PE) is accompanied by suppression of cytochrome c oxidase (CCO) activity, and copper (Cu) supplementation restores CCO activity and reverses the hypertrophy. The present study was aimed to understand the mechanism of PE-induced decrease in CCO activity. Primary cultures of neonatal rat cardiomyocytes were treated with PE at a final concentration of l00 µM in cultures for 72 h to induce cell hypertrophy. The CCO activity was determined by enzymatic assay and changes in CCO subunit COX-IV as well as copper chaperones for CCO (COX17, SCO2, and COX11) were determined by Western blotting. PE treatment increased both intracellular and extracellular homocysteine concentrations and decreased intracellular Cu concentrations. Studies in vitro found that homocysteine and Cu form complexes. Inhibition of the intracellular homocysteine synthesis in the PE-treated cardiomyocytes prevented the increase in the extracellular homocysteine concentration, retained the intracellular Cu concentration, and preserved the CCO activity. PE treatment decreased protein concentrations of the COX-IV, and the Cu chaperones COX17, COX11, and SCO2. These PE effects were prevented by either inhibition of the intracellular homocysteine synthesis or Cu supplementation. Therefore, PE-induced elevation of homocysteine restricts Cu availability through its interaction with Cu and suppression of Cu chaperones, leading to the decrease in CCO enzyme activity.  相似文献   
316.

Background

Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line.

Methodology/Principal Findings

Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis.

Conclusions/Significance

UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.  相似文献   
317.
Phytophthora capsici causes significant loss to pepper (Capsicum annum) in China and our goal was to develop single nucleotide polymorphism (SNP) markers for P. capsici and characterize genetic diversity nationwide. Eighteen isolates of P. capsici from locations worldwide were re-sequenced and candidate nuclear and mitochondrial SNPs identified. From 2006 to 2012, 276 isolates of P. capsici were recovered from 136 locations in 27 provinces and genotyped using 45 nuclear and 2 mitochondrial SNPs. There were two main mitochondrial haplotypes and 95 multi-locus genotypes (MLGs) identified. Genetic diversity was geographically structured with a high level of genotypic diversity in the north and on Hainan Island in the south, suggesting outcrossing contributes to diversity in these areas. The remaining areas of China are dominated by four clonal lineages that share mitochondrial haplotypes, are almost exclusively the A1 or A2 mating type and appear to exhibit extensive diversity based on loss of heterozygosity (LOH). Analysis of SNPs directly from infected peppers confirmed LOH in field populations. One clonal lineage is dominant throughout much of the country. The overall implications for long-lived genetically diverse clonal lineages amidst a widely dispersed sexual population are discussed.  相似文献   
318.
Ovarian cancer is an inflammation-associated malignancy with a high mortality rate. CXCR2 expressing ovarian cancers are aggressive with poorer outcomes. We therefore investigated molecular mechanisms involved in CXCR2-driven cancer progression by comparing CXCR2 positive and negative ovarian cancer cell lines. Stably CXCR2 transfected SKOV-3 cells had a faster growth rate as compared to control cells transfected with empty vector. Particularly, tumor necrosis factor (TNF), abundantly expressed in ovarian cancer, enhanced cell proliferation by decreasing the G0-G1 phase in CXCR2 transfected cells. TNF increased nuclear factor-κB (NF-κB) activity to a greater degree in CXCR2 transfected cells than control cells as well as provided a greater activation of IκB. CXCR2 transfected cells expressed higher levels of its proinflammatory ligands, CXCL1/2 and enhanced more proliferation, migration, invasion and colony formation. CXCR2 positive cells also activated more EGFR, which led to higher Akt activation. Enhanced NF-κB activity in CXCR2 positive cells was reduced by a PI3K/Akt inhibitor rather than an Erk inhibitor. CXCL1 added to CXCR2 positive cells led to an increased activation of IκB. CXCL1 also led to a significantly greater number of invasive cells in CXCR2 transfected cells, which was blocked by the NF-κB inhibitor, Bay 11-7082. In addition, enhanced cell proliferation in CXCR2 positive cells was more sensitive to CXCL1 antibody or an NF-κB inhibitor. Finally, CXCR2 transfection of parental cells increased CXCL1 promoter activity via an NF-κB site. Thus augmentation of proinflammatory chemokines CXCL1/2, by potentiating NF-κB activation through EGFR-transactivated Akt, contributes to CXCR2-driven ovarian cancer progression.  相似文献   
319.
320.

Background

Tuberculosis (TB) is still a big threat to human health, especially in children. However, an isolation of Mycobacterium tuberculosis culture from pediatric cases remains a challenge. In order to provide some scientific basis for children TB control, we investigated the genotyping and drug resistance characteristics of M. tuberculosis isolates from pediatric cases in China.

Methodology/Principal Findings

In this study, a total of 440 strains including 90 from children (<15 years), 159 from adolescents (15–18 years) and 191 from adults (>18 years) isolated in 25 provinces across China were subjected to spoligotyping and drug susceptibility testing. As a result, Beijing family strains were shown to remain predominant in China (85.6%, 81.1% and 75.4% in three above groups, respectively), especially among new children cases (91.0% vs. 69.6% in previously treated cases, P = 0.03). The prevalence of the Beijing genotype isolates was higher in northern and central China in the total collection (85.1% in northern and 83.9% in central vs. 61.6% in southern China, P<0.001) and a similar trend was seen in all three age groups (P = 0.708, <0.001 and 0.025, respectively). In adolescents, the frequencies of isoniazid (INH)-resistant and ethambutol (EMB)-resistant isolates were significantly higher among Beijing strains compared to non-Beijing genotype strains (P = 0.028 for INH and P = 0.027 for EMB). Furthermore, strong association was observed between resistance to rifampicine (RIF), streptomycin (STR) and multidrug resistance (MDR) among Beijing compared to non-Beijing strains in previously treated cases of children (P = 0.01, 0.01 and 0.025, respectively).

Conclusion/Significance

Beijing family was more prevalent in northern and central China compared to southern China and these strains were predominant in all age groups. The genetic diversity of M. tuberculosis isolates from children was similar to that found in adolescents and adults. Beijing genotype was associated with RIF, STR and MDR resistance in previously treated children.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号